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For living cells in the real world, a large organelle is commonly positioned in the inner region away
from membranes, such as the nucleus of eukaryotic cells, the nucleolus of nuclei, mitochondria,
chloroplast, Golgi body, etc. It contradicts the expectation by the current depletion-force theory in
that the larger particle should be excluded from the inner cell space onto cell boundaries in a crowding
media. Here we simply model a sizable organelle as a soft-boundary large particle allowing crowders,
which are smaller hard spheres in the model, to intrude across its boundary. The results of Monte Carlo
simulation indicate that the preferential location of the larger particle switches from the periphery into
the inner region of the cavity by increasing its softness. An integral equation theory is further developed
to account for the structural features of the model, and the theoretical predictions are found consistent
with our simulation results. Published by AIP Publishing. https://doi.org/10.1063/1.5000762

I. INTRODUCTION

Eukaryotic cells exhibit a unique structural feature con-
sisting of a nucleus embedded in the highly crowded cellular
cytoplasm with 30%-40% of space occupied by cellular mate-
rials.1,2 The nucleus is a large organelle that can take up
around 10% of cell volume.3,4 Traditionally it is known that
for an animal cell, the nucleus distributes near the center of
the cell.5 As for a plant cell, the cellular vacuole occupies
the central region of the cell due to its size though cellu-
lar activities cause some spatial fluctuation.6,7 Besides nuclei
in cells, the nucleolus in a nucleus displays a similar struc-
ture in that the nucleolus is preferentially distributed away
from the peripheral region.8 Other significantly large cellular
organelles, such as mitochondria, chloroplast, Golgi body, etc.,
are often positioned in the inner cell region away from mem-
branes.9 Despite the dynamical nature of cellular matters,7 the
traditional picture suggests the existence of a statistical sense
to account for the mean positioning of a large organelle in
the cell.

Considering molecular crowding and electrostatic screen-
ing in cellular physiological condition, excluded volume inter-
action can be highly significant compared to short- and long-
ranged intermolecular forces among cellular materials.10,11

In other words, the entropic effect may play a major role
rather than the enthalpic effect to elucidate intracellular struc-
tures. From the standpoint of entropy, the preferential loca-
tion of the nucleus away from cellular membranes in animal
cells indeed contradicts to the usual physical picture. If cells
are viewed as a cavity, then the large particle should have
a great tendency to localize adjacent to the cavity wall to
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increase the free space (or to increase entropy) for smaller
particles.12 Obviously, this depletion force picture is not appli-
cable to interpret the fact that a nucleus is located in the
region away from membranes or even near the center of a cell.
Note that the depletion forces between hard sphere liquids
near a spherical cavity wall are not exactly the same as those
close to a flat wall, and the curvature of the spherical cavity
indeed enhances the non-specific adsorption of hard spheres
onto the wall.13 The critical question here is as follows: Can
entropic effect drive the large nucleus to escape from the cell
boundary?

The recent theoretical advancement has shown that crow-
ders induced spatial separation between two closed ring-
like polymers, a sphero-cylindrical tube due to their entropic
effect.14 A further study investigated the preferential position
of a confined polymer chain in a spherical cavity in the pres-
ence of crowders. For a semiflexible chain, the polymer is
distributed near the cavity boundary because the region allows
the chain molecule to avoid crowders and to relieve its bending
energy, whereas for a flexible chain, the polymer chain is pref-
erentially distributed in the inner cavity with crowders being
blended into the inside of the chain coil.15

Recently, Oda et al. have conducted an experiment in
which a larger granular particle and multiple small ones are
confined within a cylindrical cavity, a 2D circular cavity, under
vertical vibration.16 These particles are as rigid as the hard
sphere model in liquid state theory. The vertical vibration
triggers spatial fluctuations and frequent collisions among par-
ticles act like thermal motion in liquid. The experiment was
motivated to provide insights into the location of cellular nuclei
(or a large organelle). The experimental finding shows that the
preferential location of the large particle switches from the
region of the cavity wall towards the inner cavity by increasing
packing fraction (or crowding level). This result can be roughly

0021-9606/2017/147(20)/204901/11/$30.00 147, 204901-1 Published by AIP Publishing.

https://doi.org/10.1063/1.5000762
https://doi.org/10.1063/1.5000762
https://doi.org/10.1063/1.5000762
mailto:chwenyang.shew@csi.cuny.edu
http://crossmark.crossref.org/dialog/?doi=10.1063/1.5000762&domain=pdf&date_stamp=2017-11-22


204901-2 Shew, Oda, and Yoshikawa J. Chem. Phys. 147, 204901 (2017)

understood based on the mean-field entropic arguments
of confined hard spheres. A detailed analysis further reveals
that the size disparity between the large particle and small par-
ticles is the primary cause. Dynamically, small hard spheres
tend to lift the larger hard sphere through their vertical motion,
in particular, when the larger sphere is positioned near the
cavity wall. While the larger sphere bounces back from the
cavity wall at a high enough density of small particles, it
may move on the top of small spheres and towards the inner
cavity.

To translate the above dynamical behavior into a statisti-
cal mechanics understanding on crowding effect, we suggest
a simple model to replace the large rigid particle with a soft-
boundary sphere. In the near 2D experiment of Oda et al.,16

small particles are able to partially move underneath the larger
particle because of their size disparity, similar to partial pene-
tration of smaller particles into the larger particle. This charac-
teristic is consistent with the fact that a nucleus can be viewed
as a soft-boundary particle allowing matter exchange across
elastic nuclear membranes.17 By using Monte Carlo simula-
tion, in this work, we intend to investigate the above model
for three dimensional crowding systems with aims to iden-
tify the possible correlation between the effect of softness of
a nucleus (or a large organelle) and its preferential location in
a cell under molecular crowding. An integral equation theory
is further developed to verify the general structural features
observed in our simulation.

II. MODEL AND MONTE CARLO SIMULATION

Here we consider a model that mixes a single large sphere
of diameter DL =σ (=2RL) (like the nucleus or a large organelle
in a biological cell), which has a soft boundary allowing intru-
sion on collisions and multiple small hard spheres of diameter
Ds (=2Rs) as crowders in a 3D rigid spherical cavity of radius
Rcav. Figure 1 displays the schematic of the model in (a), where
DLs denotes the penetration depth into a large sphere allowed
by a small sphere and Rcore denotes the hard core radius in the
soft-boundary large sphere, and the 2D representation of the
expected structural feature from the model in (b). Namely, the
shortest distance between the hard core of the large sphere and
a small sphere can decrease from RL + Rs (hard sphere limit)
to DLs (soft-boundary large sphere). The (nominal) packing
fraction η is defined as (R3

L + NsR3
s )/R3

cav , where N s is the
number of small hard spheres. The cavity size is chosen to be
Rcav = 1.1σ to match that the large particle takes up about
10% of the cavity space as a nucleus in a cell. The interac-
tion potentials between a particle and the cavity wall are given
by

V (rK
i ) = 0 if rK

i < Rcav − RK

= ∞ if rK
i ≥ Rcav − RK , (1)

where rK
i is the radial distance of the ith particle of species K

measured from the center of the cavity and RK is the radius of
the species K (RK = RL and Rs for the large and small sphere,
respectively). For the large sphere, this potential defines its
outer boundary. The hard core radius inside the large soft-
boundary sphere Rcore is related to the penetration depth DLs,

FIG. 1. Plot of schematics of the simulation model in (a), where DLs denotes
the penetration depth into a large sphere allowed by a small hard sphere,
DL (=σ) denotes the diameter of the single large sphere (green spheres), Ds
(=2Rs) denotes the diameter of Ns small spheres, Rcav denotes the cavity
radius, Rcore denotes the hard core radius in the soft-boundary large sphere,
and σ is the length unit of this work; the 2D representation of the expected
structural feature from the model in (b) in which the large sphere shifts from
the periphery (left panel) to inner region (right panel) after the soft boundary
is incorporated.

as shown in Fig. 1, and the radius of the crowder Rs (=Ds/2)
with the relation given as follows:

DLs = Rcore + Rs.

The interaction potentials between particles are given by

V (rKM
ij ) = 0 if rKM

ij < dKM

= ∞ if rKM
ij ≥ dKM , (2)

where rKM
ij is the distance between the ith particle of species K

and the jth particle of species M measured from their centers
and dKM is the minimum distance allowed to approach between
a particle from species K particle and a particle from species
M. Note that dLs = DLs and dss = σs in our model that has one
large sphere and multiple smaller crowders.

In other words, the large sphere in our model consists of
two boundaries: the outer boundary prohibits the large sphere
from crossing the cavity wall and the inner boundary is a hard
core, like a smaller hard sphere, which cannot be penetrated
by smaller crowders. The space between these two boundaries
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is empty that can be filled with smaller crowders. This empty
space is referred to as “softness” in our model as opposed to
the usual hard sphere model with all the space filled up with
matters within the sphere.

This empty space inside the large sphere increases the
number of ways (or the probability) the crowders around the
large sphere in contrast to the case at the hard sphere limit.
Qualitatively, this is similar to incorporate attractive interac-
tions between the large sphere and small crowders as a starting
point prior to adding the explicit attractive forces into the
model. These characteristics act as membranes at the entropic
level, that is, allowing matter exchanges and protrusion of cel-
lular matters on membranes.18 Also, the model captures the
entropy effect induced by the multiple ways of interactions
between cellular matters and a heterogeneous membrane sur-
face. Figure 1(b) qualitatively depicts the expected structure
arising from the model: the large sphere shifts away from the
cavity boundary after the soft boundary is incorporated into the
large sphere. As the empty space emerges in the large sphere,
the small crowders can be driven into this space by osmotic
pressure around the large sphere, which can separate the large
sphere from the cavity wall.

Monte Carlo simulation is carried out based on the
Metropolis algorithm,19 and the randomly chosen particle
undertakes a random walk, in which the displacement of
the particle along any given dimension is chosen randomly
between �δ and δ, where δ is the step size. The simulations
are tested by three different schemes. First, a particle is ran-
domly picked and is placed in a new position by using the
same step size for all species. Second, the step size assigned
to the large sphere is different from that assigned to small
spheres, and these step sizes are fixed throughout the entire
simulation. The step sizes are adjusted in such a way that the
acceptance ratio for each species is around 60%. Third, we
sample the large particle and small particles with the probabil-
ities 30% and 70%, respectively, to facilitate the large sphere
moving around the cavity. In this scheme, we first generate a
random number. If this random number is less than 0.3, we
attempt a random move for the large sphere; otherwise a small
crowder is randomly chosen to perform a random walk. The
simulation results are insensitive to the chosen scheme. To
calculate the spatial density distribution function for each con-
dition, 2.5 × 109 moves are performed at least, and the first
5 × 108 moves are discarded to assure the system to reach its
equilibrium. The simulated density distribution functions and
other quantities are obtained by averaging over 108 equilibrium
configurations.

The primary study here is on the density distribution
function of different species, which is defined as follows:

ρi(r) =
H(r)

NT∆V (r)Ni
, (3)

where i is the large or small sphere; H(r) is the histogram of
particles falling into the layer between the radial distance r
and r + ∆r in the simulation, where ∆r is the interval of each
layer; NT is the total configurations sampled for calculation;
N i is the number of particles for species i. In the simulation, we
divide the cavity into 60 layers and∆r = Rcav/60. The challenge
of simulation lies in the volume disparity between periphery

and inner cavity, which hinders sufficient sampling around the
cavity center.

III. INTEGRAL EQUATION THEORY

We test the features observed in the simulation by using
an integral equation theory. As suggested by Zhou and Stell,
the integral equation theory for a one-component liquid in a
spherical pore can be solved by using Fourier transformation.20

For the model investigated here, there are three components
to be considered including the large sphere, small crowders,
and a cavity. The three-component integral equation theory in
Fourier k-space (or momentum transfer) takes the following
form:

ĤL3(k) = ĈL3(k) + ρLĤLL(k)ĈL3(k)

+ ρsĤLs(k)Ĉs3(k) + ρ3ĤL3(k)Ĉ33(k), (4)

Ĥs3(k) = Ĉs3(k) + ρLĤsL(k)Ĉs3(k)

+ ρsĤss(k)Ĉs3(k) + ρ3Ĥs3(k)Ĉ33(k), (5)

where L, s, and 3 denote the large sphere, small crowders, and
the cavity, respectively; ρj is the density of the jth species;
Ĥ ij and Ĉij denote the total correlation function and the direct
correlation function between i and j species, respectively. Note
that the pair correlation function gij(r) = hij(r) + 1.

Here we consider an isolated cavity, and the above equa-
tions are simplified to the following equations by introducing
ρ3 = 0 and Ĉ33 = 0:

ĤL3(k) = ĈL3(k) + ρLĤLL(k)ĈL3(k) + ρsĤLs(k)Ĉs3(k), (6)

Ĥs3(k) = Ĉs3(k) + ρLĤsL(k)Ĉs3(k) + ρsĤss(k)Ĉs3(k). (7)

To incorporate the rigid cavity, we apply the Percus-Yevick
(PY) closure to reinforce the hard spherical wall condition,
which reads

Hi3(r) = −1 if r > Rcav , (8)

Ci3(r) = 0 if r ≤ Rcav , (9)

where i denotes L or s. As other problems dealing with inhomo-
geneous fluids in the literature,22 one possible approximation
is to obtain ĤLL, ĤLs (=ĤsL), and Ĥss from solving the integral
equation of the binary hard sphere mixture in bulk solution.
Note that we have compared the results using hypernetted
chain and PY closure, and the results for HL3(r) and Hs3(r)
show little difference in our case. For the soft-boundary large
sphere, the minimum distance between the large sphere and a
small sphere becomes DLs.

The fundamental issue to study the liquid structure in a
spherical pore is that particle densities are ill-defined and the
density distribution function needs to be renormalized as sug-
gested by Kim et al.21 In the integral equation theory, we define
the particle density of species i as ρ0

i = Ni/(4πR3
cav/3), where

N i is the particle number of species i. The density distribution
function is calculated as

ρi(r) =
ρ0

i gi3(r)

∫
∞

0 gi3(r)dr
, (10)

where gi3(r) is the pair correlation function species i and 3
(cavity) and is equal to H i3(r) + 1. These integral equations
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are solved by using the Picard method22 with 29 grids and
the interval is 0.01σ. As expected, the numerical theory has
limitations and the solution does not converge for small cavities
and the crowders of a higher density and/or a smaller size.
Nevertheless, we find solutions for crowders of diameter 0.5σ
and Rcav ≥ 1.5σ. In a slightly larger cavity like Rcav = 2σ, the
numerical calculation also converges for crowders of diameter
0.4σ at high enough packing fractions like η = 0.24. These
conditions are sufficient to test the structural features from
the present simulation work. Also both theory and simulation
considered here are corresponding to the canonical ensemble,
and the theory requires no fixed chemical potential as in density
functional theory.21,23

IV. RESULTS AND DISCUSSION
A. Simulation for the biological cell motivated model
1. Preferential positioning of the soft-boundary
large sphere

In the simulation, we first investigate the effect of softness
on the structure of the large particle according to its density
distribution function under packing fraction η = 0.34 for small
spheres with Ds = 0.3σ and the large sphere with DL = σ. The
cavity size considered here is Rcav = 1.1σ which is close to a
living cell with its nucleus occupying roughly 10% of the entire
cell volume. This packing fraction is in the range of cellular
crowding. Figure 2 plots the density distribution function of
the large particle ρL for different penetration depths DLs, as
marked, when Ds = 0.3σ in (a), and typical snapshot for DLs

= 0.6σ in (b) and 0.65σ in (c), respectively; the predicted
histogram of the probability of finding the large particle in the
cavity P(ri) within the ith grid for DLs/σ = 0.65 and 0.55 is
denoted by solid bars/a solid line and line-pattern bars/a dotted
line, respectively, in (d). Note that P(ri) = ∫

ri+∆r
ri

4πr2ρLdr,
where ∆r is the grid size of the histogram. The inset in (a)
compares three cases of DLs, as marked, below the hard sphere
limit in the semi-log scale. In the case of DLs = 0.65σ, the
soft boundary of the large sphere diminishes, i.e., the large
sphere behaves like a hard sphere. The corresponding density
distribution function exhibits the maximum at near the cavity
wall, and thus, the large sphere emerges only on the cavity
periphery. This result at the hard sphere limit (DLs = 0.65σ)
is consistent with the picture of the depletion force, suggested
by Asakura and Oosawa,12 in which the preferential location
of the confined large object under molecular crowding is next
to the cavity wall.

Accompanied by the introduction of softness into the
large sphere, the profile of density distribution undergoes a
significant change for DLs = 0.55σ. The maximum distribu-
tion appears close to the center of the cavity along with a
smaller peak near r = 0.38σ. These structure characteristics
contradict to the prediction of the depletion force theory. As
DLs is decreased to 0.5σ, the structural features remain sim-
ilar except that the smaller peak shifts to 0.43σ or so. For
DLs = 0.45σ, the distribution near the cavity center diminishes
pronouncedly. The peak most close to the cavity center now
shifts to the position at around r = 0.18σ, and the other peak
near the cavity wall is found at around r = 0.48σ. By reducing

FIG. 2. Plot of the density distribution function of the large particle ρL for
different penetration depths DLs, as marked, when Ds = 0.3σ in (a); typical
snapshots for DLs = 0.6σ in (b) and DLs = 0.65σ in (c), respectively, where
DLs = 0.65σ corresponds to the hard sphere limit; the histogram of the prob-
ability of finding the large sphere in the cavity P(ri) within the ith grid for
DLs = 0.65σ, denoted by solid bars and a line, and 0.55σ, denoted by line-
pattern bars and a dotted line (to compare with future experiments) in (d). The
inset in (a) is the semi-log plot for greater DLs, as marked. The lines in (d) are
a guide to the eye.

DLs to 0.3σ, the density distribution function becomes quite
flat in the whole range of r. In the inset of Fig. 2(a),
centralization of the soft-boundary large sphere at around the
cavity center is observed for three different cases of DLs.
The density distribution function of DLs = 0.60σ manifests
the weak attachment of the large sphere to the cavity wall
compared to that of DLs = 0.65σ.

At near the cavity center (r = 0), we find the peak of
global maximum for DLs = 0.60σ, indicating that centraliza-
tion of the soft-boundary large hard sphere becomes a key
process to establish its structure. As DLs is decreased from
0.60σ to 0.55σ, a significant decrease in the distribution of
the soft-boundary large sphere near the cavity boundary is
observed, and the centralization process is greatly enhanced.
The snapshots in Figs. 2(b) and 2(c) illustrate this finding,
in which the large sphere shifts its preferential position-
ing to the inner cavity [Fig. 2(b) for DLs = 0.6σ] from the
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TABLE I. Position of the peak near cavity wall for η = 0.34 and Rs = 0.15σ.

Approximate position from
DLs/σ simulation (in σ) (Rcav � DLs � Rs)/σ

0.60 0.32 0.35
0.55 0.38 0.40
0.50 0.43 0.45
0.45 0.48 0.50

location near the cavity boundary proximity [Fig. 2(c)] at the
hard sphere limit with DLs = 0.65σ. By decreasing DLs from
0.55σ to 0.50σ, the centralization process is weakened along
with a decrease of the density distribution function at near
r = 0. The histogram of ρL in Fig. 2(d) shows the probabil-
ity of finding the large sphere in the cavity predicted by the
model to compare with the future experimental observation
similar to the work by Oda et al.16 It predicts that the large
sphere with the soft boundary tends to distribute in inner cav-
ity more frequently but the rigid large sphere distributes around
periphery.

The important structural features in Fig. 2 are summarized
as follows. For DLs/σ in the range between 0.60 and 0.45,
the density distribution function from simulation displays two
main peaks: one is near the cavity wall (not next to the wall)
and the other is near the cavity center. The dependence of the
position for the peak near the cavity wall on DLs is summarized
in Table I. The simulated peak position is roughly comparable
with the equation Rcav � DLs � Rs. Besides, it is noticeable
that in Fig. 2 the density distribution near r = 0 decreases
significantly when DLs/σ is varied from 0.50 to 0.45. While
DLs/σ is decreased from 0.45 to 0.30, the soft-boundary large
sphere (in inner cavity) behaves more like a crowder. All these
findings will be discussed further below.

In the hard sphere limit, the large sphere tends to attach
onto the cavity wall due to the depletion force with the cavity
wall under the crowding level being studied here. The soft-
ness induces “desorption” of the large sphere from the wall
as illustrated in the schematics of Fig. 3. The figure exhibits
two possible pictures arising from the excluded volume inter-
actions among the small spheres, the cavity wall, and the
soft-boundary large sphere. Figure 3(a) shows the case of RL

� Rs < DLs < RL + Rs, and Fig. 3(b) is for DLs ≤ RL � Rs. The

“transverse” depletion force is due to packing of small crow-
ders against the contact area of the outermost surface of the
large sphere and the cavity boundary, and the “radial” depletion
force is originated from the packing of the large sphere against
the cavity boundary due to smaller crowders. The reason that
the large sphere escapes from the cavity boundary occurring
for RL � Rs < DLs < RL + Rs is attributed to the free space
generated by the “soft” interior of the large sphere. Note that a
small hard sphere is allowed to penetrate into the large sphere
up to the distance DLs. Below this distance is the forbidden
region in which the small sphere unphysically overlaps with
the hard core inside the large sphere.

At a high enough packing fraction, a greater number of
small spheres distributes around the cavity wall. With the soft-
boundary large sphere next to the cavity boundary, it creates
an exclusion zone that cannot be accessed by any small par-
ticles, which causes a greater osmotic pressure, as the solid
arrows and shaded area shown in the right panel of Fig. 3(a).
In contrast, when the soft-boundary large sphere becomes dis-
tant from the cavity wall, small spheres pack themselves onto
the cavity wall as well as the surface of the hard core inside
the soft-boundary large sphere to increase the interior free vol-
ume of the cavity, a mechanism to relieve the osmotic pressure.
Namely, the “transverse” depletion force (solid arrows) is more
advantageous than the “radial” depletion force (open arrows)
in Fig. 3(a). As a result, the soft-boundary large sphere tends
to shift away from the regime close to the cavity wall. As
seen in the inset of Fig. 2, by incorporating the soft boundary,
the large sphere starts to escape from the cavity wall for DLs

= 0.60σ and to increase its presence at the cavity center. A
further decrease of DLs to 0.55σ enhances this scenario. The
preferential position of the soft-boundary large sphere, which
is most close to the cavity boundary (not next to the wall),
occurs at near Rcav � DLs � Rs, consistent with the simulation
result for those cases summarized in Table I. Note that spatial
fluctuation may contribute to the minor difference between
simulation and theoretical prediction.

For DLs smaller than RL � Rs, the space between RL and
the hard core inside the soft-boundary large sphere allows
small hard spheres to bypass the hard core area when the soft-
boundary large sphere is next to the cavity wall as shown in the
schematic of Fig. 3(b). The “transverse” depletion force dom-
inates because the “radial” depletion force has no significant

FIG. 3. Schematic plot of two possible pictures arising
from the excluded volume interactions among the small
spheres of radius Rs, the cavity wall and the soft-boundary
large sphere of radius RL for the case RL � Rs < DLs
< RL + Rs in (a) and DLs ≤ RL � Rs. in (b). The left
panels are 3D schematics and the right panels display
their vertical cross-sectional view. The shaded area in
the right schematic of Fig. 3(a) denotes the exclusion
zone for small spheres due to the soft-boundary large
sphere at near the cavity wall. The solid arrows and the
open arrows denote the likely “transverse” and “radial”
depletion forces, respectively, explained in the context of
the figure.
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contribution (no contact between the hard core of the large
sphere and the cavity wall). Meanwhile the free space in the
cavity increases due to the shrinkage of the hard core of the
soft-boundary large sphere. Hence, the effect of the hard core
of the soft-boundary large sphere becomes secondary as in the
case of DLs = 0.30σ (<RL � Rs) in Fig. 2. Note that when RL

= 0.50σ and Rs = 0.15σ, we have RL � Rs = 0.35σ. The most
significant finding in these studies is that the soft boundary of
the large sphere triggers the large sphere to escape from the
cavity wall. Such a finding is consistent with the common pic-
ture that the preferential location of a large organelle is away
from the region of periphery.

2. Structure of smaller crowders in a cavity

The preferential location of the soft-boundary large sphere
has a direct impact on the spatial distribution of small hard
spheres. Figure 4 plots the density distribution function of
small hard spheres of Ds = 0.3σ for different DLs’s, as marked,
and the 2D representations to explain the different structure
between a larger (left panel) and a smaller (right panel) DLs

in (b). When the large sphere is in its hard sphere limit (DLs

= 0.65σ), the density distribution of small spheres in Fig. 4(a)
shows liquid-like ordering with the maximum found around
the cavity wall. At the area very close to r = 0, the probability

FIG. 4. Plot of the density distribution function of small spheres ρs in (a),
including the inset, for different DLs’s, as marked, when Ds = 0.3σ (same
parameters as in Fig. 2); the 2D representations to account for the different
structure between a larger (left panel) and a smaller (right panel) DLs in (b).

of finding small particles quickly drops to zero because the
size of the large sphere blocks a smaller crowder of size Ds

= 0.3σ to access the cavity center. For DLs = 0.50σ, its ρs

decreases continuously from r = 0.3σ towards r = 0. At r = 0,
ρs remains low but becomes non-zero. This feature is more
like the correlation hole caused by repulsive forces24 which
are originated from the hard core of the soft-boundary large
sphere in this case. Similar cases are shown in the inset of
Fig. 3(a) for greater DLs. When DLs = 0.45σ, the region of the
correlation hole disappears, indicating that small spheres tend
to move more freely in this region. A further discussion on this
finding will be given next.

For a large enough DLs (≥0.50σ), the soft-boundary large
sphere exhibits a higher tendency to distribute at near the cen-
ter of the cavity. This centralization process attenuates as DLs is
decreased to DLs = 0.45σ, for instance. The possible physical
origin can be understood as follows. After the large sphere of
a larger DLs drifts away from periphery, tight packing of small
spheres onto the surface of the hard core of the large sphere
creates an entropically favorable process to increase the free
volume inside the cavity as shown in the left schematic of
Fig. 4(b). By placing the soft-boundary large sphere at the
center of the cavity, small crowders can have a more equal
distribution at all directions, which favors the system entropy.
The decrease of DLs from DLs = 0.50σ to 0.45σ may trig-
ger the following two mechanisms for smaller crowders as
shown in the right 2D schematic of Fig. 4(b): (1) the free vol-
ume of the cavity is increased and (2) the hard core surface of
the soft-boundary large sphere is decreased. Since the particle
density around the hard core of the soft-boundary large sphere
is roughly scaled as 1/DLs (the number of crowders adsorbed
onto the hard core surface of the large sphere ∼D2

Ls and the
volume occupied by the adsorbed spheres ∼D3

Ls). Therefore,
the smaller DLs (for example, DLs = 0.45σ) induces a greater
particle density of smaller crowders around the hard core of
the soft-boundary large sphere, causing a greater local osmotic
pressure25 and diffusivity (concentration gradient),26 both of
which drive the large sphere (attached with small crowders)
to the lower density region. Consequently, for DLs = 0.45σ,
the soft-boundary large sphere moves away from the cavity
center, and the peak (most close to the cavity center) is now at
around r = 0.15σ in Fig. 2, illustrated in the right schematic
of Fig. 4(b). As a matter of fact, this peak position (in ρL) is
actually near a local minimum of ρs in Fig. 3, an area that has
a lower local crowder density.

3. Effect of crowder size

The excluded volume interaction between small hard
spheres and the soft-boundary large sphere is an essential fac-
tor to induce migration of the large sphere away from the cavity
wall. It is instructive to reveal the role of the steric hindrance
of small spheres on this issue by changing the size of small
spheres but keeping the crowding level intact. In the following
are the simulation results to investigate the structural prop-
erty of the large sphere when the diameter of small spheres is
decreased from 0.30σ to 0.2σ but keeping the packing fraction
η at 0.34 same as in Fig. 2 (in the range of cellular crowding).
Figure 5 plots the density distribution function of the large
sphere for different DLs’s, as marked, when Ds = 0.2σ in (a),
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FIG. 5. Plot of the density distribution function of the large sphere for differ-
ent DLs’s, as marked, when Ds = 0.2σ (different from Fig. 2) in (a); typical
snapshots for DLs = 0.6σ in (b) and DLs = 0.55σ in (c), respectively, where
DLs = 0.6σ corresponds to the hard sphere limit.

and the typical snapshots for DLs = 0.6σ in (b) and 0.55σ in
(c). When Ds = 0.20σ, the parameter DLs = 0.60σ corresponds
to the hard sphere limit. As expected, the large sphere tends to
attach to the cavity wall. After the soft boundary is incorpo-
rated into the large sphere, i.e., for those DLs < 0.60σ in the
figure, the large sphere distributes away from the cavity wall.
These observations are consistent with the snapshots shown
in Figs. 5(b) and 5(c). In each case, the density distribution
function has multiple peaks arising form the competition of
spatial packing with small spheres.18 The peak most close to
the cavity wall follows the similar pattern as in Table I, and
the position is roughly equal to Rcav � DLs � Rs.

For large enough DLs like 0.55σ and 0.5σ, centralization
of the soft-boundary large sphere at the cavity center can be
observed. The corresponding density distribution functions at
r = 0 are not as prominent as those in Fig. 2(a). This result
suggests that reducing the size of smaller crowders may offset
the centralization process of the soft-boundary large sphere
but does not compromise the fact that the soft boundary is
essential to facilitate the large sphere to escape from the cav-
ity wall. Moreover, as DLs is decreased to 0.45σ in Fig. 5(a),
the cavity gains enough free volume and centralization of the
soft-boundary large sphere at r = 0 becomes less pronounced.
Nevertheless, escape of the soft-boundary large sphere away

from the cavity wall can be clearly observed along with a
greater probability for the large sphere to be found in the cavity
interior than in the region next to the cavity wall. Such a trend
of specific localization found in the present study is relevant
to the cellular materials that contribute to molecular crowd-
ing, and the crowders in a cell may have a sufficiently large
size through aggregation of cellular biopolymers to sustain
the centralization process of a nucleus or a large organelle in
a cell.

Despite the fact that the 3-D model is considered here, the
predictions arising from this model are quite general, which
generate similar features observed in the previous vibration
experiment done by Oda et al.16 The work by Oda et al. inves-
tigated a mixture consisting of a larger granular particle and
multiple smaller granular particles confined within a 2D cir-
cular disk under vertical vibration. The vibration motion of
particles induced frequent collisions among them, and the sys-
tem can be viewed as a quasi-2D hard sphere mixture. Due to
the size disparity, the smaller spheres are allowed to move into
the space under the larger sphere. Two important findings were
reported: the preferential location of the larger particle shifts
from the region near the cavity wall to the inner cavity by (1)
decreasing the size of the smaller particles at a high enough
particle density and (2) increasing the density of smaller par-
ticles of a given crowder size. Figure 6 plots ρL for Ds = 0.3σ
and 0.2σ for different DLs’s, as marked, when η = 0.34. In
the hard sphere limit, ρL at the cavity wall (near r = 0.6σ) is
increased by decreasing Ds from 0.3σ to 0.2σ, indicating that
smaller crowders are more effective to maintain the depletion
force between the larger sphere and the cavity wall.30 While
the value of DLs is reduced by 0.05σ compared to the corre-
sponding hard sphere limit for each Ds, the result shows that

FIG. 6. Plot of the density distribution function of the large sphere ρL for
Ds = 0.3σ and 0.2σ for different DLs’s, as marked, when η = 0.34. Symbols
denote simulation results to clarify parameters in calculation, and the lines
are a guide to the eye. The hard sphere limits have the same parameters as
those in Fig. 2 (DLs = 0.65σ for Ds = 0.3σ) and this figure (DLs = 0.6σ for
Ds = 0.2σ).
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FIG. 7. Plot of ρL for the packing fractionη = 0.24, denoted by solid symbols,
and 0.34, denoted by open symbols, for DLs = 0.55σ, denoted by circles, and
0.6σ, denoted by squares when Ds = 0.3σ. Symbols denote simulation results
to clarify parameters in calculation, and the lines are a guide to the eye.

the smaller crowder size Ds (=0.2σ) enhances migration of the
soft-boundary large sphere into the inner cavity (away from the
cavity wall), whereas the soft-boundary large sphere under the
crowders with the greater Ds (=0.3 σ) exhibits the perceivable
probability to adhere to the cavity wall.

Figure 7 plots ρL for the packing fraction η = 0.24, denoted
by solid symbols, and 0.34, denoted by open symbols, for DLs

= 0.55σ, denoted by circles, and 0.6σ, denoted by squares
when Ds = 0.3σ. The DLs values chosen here are corresponding
to the soft-boundary large sphere. At the lower packing fraction
η = 0.24, the large sphere for both cases DLs = 0.55σ and 0.6σ
has displayed a higher probability to be located near the cavity
wall because the number of crowders that occupies the region
near the cavity wall is expected to be smaller than that of η
= 0.34. As a result, the forbidden zone near the wall cre-
ated by the soft-boundary large sphere, as shown in Fig. 3(a),
becomes less essential for small spheres along with the weaker
“transverse” force. Since the “radial” depletion remains sig-
nificant, ρL near the cavity wall with smaller η (=0.24) in Fig.
7 is greater for both DLs compared to their counterparts for η
= 0.34. Such a result suggests that a higher packing fraction
facilitates the soft-boundary large sphere shifting to the inner
cavity. It is instructive to point out that the findings of Figs. 6
and 7 are consistent with the experimental observations in the
previous work by Oda et al.,16 but the current work provides
physical insights into the experimental findings.

B. Testing simulation results with theory
1. Dependence of the softness of the soft-boundary
large sphere on structure

To test the above predictions of the model, we compare
the results of integral equation theory with those of simula-
tion. Figure 8 displays ρL for various DLs, as marked, when

FIG. 8. Comparison of ρL from simulation, denoted by symbols, and theory,
denoted by lines, for different DLs’s as marked when η = 0.189, Rcav = 1.5σ,
and Rs = 0.5σ. Note that the dotted line denotes the hard sphere limit when
DLs = RL + Rs. The inset is the same plot but for ρs.

η = 0.189, Rcav = 1.5σ, and Rs = 0.5σ. The inset is the same plot
except for ρs. The theory predicts similar features as shown in
the simulation. At the hard sphere limit (dashed line in Fig. 8),
ρL exhibits the maximum at near the cavity wall (r = Rcav

� 0.5σ). Since the packing fraction is low, the second peak
emerges at near r/σ = 0.38 in theory, similar to the simula-
tion result. As DLs is decreased, the peak near the cavity wall
diminishes, and the large sphere shifts to the cavity interior.
The highest peak moves closer to the inner cavity when DLs

is decreased from 0.55 to 0.45. The results of theory show
qualitative agreement with simulation, and such behavior is
consistent with the results summarized in Table I. For crow-
ders at this packing fraction, ρs shows little change among
three different DLs’s due to the lower packing fraction and
larger cavity size. A minor difference is found in both simula-
tion and theory in which for DLs = 0.75σ, the smaller sphere
has a slightly greater chance to be near at the cavity center, a
feature not seen in Fig. 4, which can be attributed to the larger
cavity size here. Quantitatively, the theory underestimates the
contact value around the cavity boundary and overestimates
the density distribution in the inner cavity. Nonetheless, the
theory predicts the essential features seen in our simulation
results.

2. Packing fraction effect on the preferential
positioning of the soft-boundary large sphere

Figure 9 compares ρL from simulation (symbols) and from
theory (lines) for two different packing fractions η = 0.28
(solid symbols and solid lines) and 0.189 (open symbols and
dashed lines) with DLs/σ = 0.55 and 0.45, as marked, when
Rcav = 2σ and Rs = 0.25σ. Both theory and simulation show
reasonable agreement for the soft-boundary large sphere at
the two densities. For the greater DLs/σ (=0.55), ρL next to
the wall diminishes more significantly for the greater packing
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FIG. 9. Plot of ρL from simulation, denoted by symbols, and from theory,
denoted by lines for η = 0.28 (solid symbols and solid lines) and 0.189 (open
symbols and dashed lines) with DLs = 0.55σ and 0.45σ, as marked, when
Rcav = 2σ and Rs = 0.25σ. The y-axes for DLs/σ = 0.55 and 0.45 are on right
and left, respectively, as indicated by the direction of the arrows.

fraction together with a more pronounced oscillatory pattern.
While DLs is reduced to 0.45σ, ρL is enhanced at near the
cavity boundary, but the oscillatory structure in ρL becomes
less marked. The peaks in the inner cavity and near the wall
(not next to the wall) for both DLs follow the spatial packing
pattern similar to Table I. At the cavity center r = 0 for DLs

= 0.55σ, the tighter spatial packing among particles under a
greater η (=0.28) induces a higher density distribution. Once
DLs is lowered to 0.45σ, the density distribution near r = 0
decreases. All of the above trends are similar to those shown
in Fig. 7.

3. Crowder sizes and the structure
of confined particles

To test the size effects of crowders, Fig. 10 compares ρL

between Rs/σ = 0.25, denoted by squares (simulation) and
solid lines (theory), and Rs/σ = 0.2, denoted by circles (simu-
lation) and dotted lines (theory) at the hard sphere limit when
η = 0.24 and Rcav/σ = 2. Note that DLs/σ = 0.75 and 0.7 for
Rs/σ = 0.25 and 0.2, respectively, in this limit. The inset is the
same plot except for ρs. For ρL, the contact value of the large
sphere near the wall rises more by mixing with crowders of a
smaller size (i.e., Rs/σ = 0.2), similar to Fig. 6. For crowders,
both Rs/σ = 0.25 and 0.2 display an oscillatory pattern, but the
oscillation is more marked for the larger crowders. At near
r = 0, the oscillatory structure remains in ρs for larger
crowders, whereas ρs of smaller crowders become flattened.
These findings indicate that the larger crowders pack more
tightly and the smaller crowders experience more spatial
fluctuation.

We further compare the simulation and theory for ρL of
the soft boundary large sphere in Fig. 11 that is the same plot
as in Fig. 10 except that DLs/σ is changed to 0.55 and 0.5 for
Rs/σ = 0.25 and 0.2, respectively. In both cases of Fig. 11, ρL

FIG. 10. Plot of ρL between simulation, denoted by symbols, and theory,
denoted by lines at the hard sphere limit for Rs/σ = 0.25, denoted by open
circles and solid line, and 0.2, denoted by open squares and dashed line, when
η = 0.24 (DLs/σ = 0.75 and 0.7 for Rs/σ = 0.25 and 0.2, respectively). The
inset is the same plot except for ρs.

near the wall is lower than those in Fig. 10. The multiple peaks
in the layer structure of ρL shift to smaller r as Rs is decreased.
Qualitatively, a similar behavior has been found in Fig. 6.

In the range of conditions that we find solutions for the
integral equation theory, the theoretical predictions are in
reasonable agreement with the simulation results. The theory
renders an opportunity to verify our simulation work for the
much smaller cavity that has biological implications.

The introduction of softness into the large sphere seems
to lessen the crowding level of the system, but its effect is quite

FIG. 11. Same plot of ρL as Fig. 10 except that the large sphere has a soft
boundary with DLs/σ = 0.55 and 0.5 for Rs/σ = 0.25 and 0.2, respectively.
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different from gaining free volume by decreasing the density
of small spheres. These two processes are likely to occur in
different length scales. As in the past study, we have made it
clear that a decrease of crowding level by lowering the num-
ber of crowders causes the localization of the large sphere
adjacent to the cavity boundary (other than driving its local-
ization in the inner cavity).16 Such an opposite trend suggests
the scientific importance of this topic on the further study, i.e.,
it is highly expected that the localization of the large sphere
is critically dependent on the manner of interaction with the
crowders. In other words, a change in the detailed interac-
tion potential would play a significant role on the specific
localization.

V. CONCLUSIONS

The large organelle like the nucleus of eukaryotic cells
is commonly observed in the region away from the cellu-
lar membrane, including the center of the cavity. Since the
interior of a cell is highly crowded, excluded volume interac-
tions are essential to elucidate the preferential location of the
nucleus. To better understand this problem from the stand-
point of entropy, we investigate a simple athermal model
consisting of a soft-boundary large hard sphere and small
hard spheres as crowders by using the Monte Carlo simu-
lation and an integral equation theory. In the range that the
theory has solutions, both simulation and theory are in reason-
able agreement qualitatively. We find that the soft boundary of
the larger particle allows small hard spheres to partially pen-
etrate into the large sphere, which causes the larger sphere to
escape from the cavity wall. The result is consistent with the
general view regarding the preferential location of the large
organelle like the nucleus in a biological cell. This finding is
not surprising because large organelles like nuclei have soft
boundaries by nature, which allows matter exchange in-and-
out the elastic nuclear membrane. As a matter of fact, such
a trend is different from the usual depletion force argument
that the larger sphere is expected to attach to the cavity wall
under molecular crowding. Besides, for the large enough small
spheres as crowders, the moderate penetration depth into the
large sphere may facilitate centralization of the large particle
away from the cavity boundary including the central region
of the cavity at the level of cellular crowding. Considering the
cytoplasm materials in a cell, we may find multiple large crow-
ders originating from cellular organelles and aggregates of
biomacromolecules to facilitate centralization of nuclei within
the cell. From the model study in this work, we conclude
that entropic effect alone can serve as a driving force for the
escape of the nucleus away from cellular membrane by its soft
boundary.27

Besides, we find that the 3D model considered in this
work provides the essential physical insights into the quasi-2D
vibration experiment by Oda et al.16 Furthermore, the simple
model may account for the physical origin of the centralization
of DNA in prokaryotic cells without nuclear membranes.28 In
this case, one may treat the contract DNA in a prokaryotic cell
as a porous sphere that allows matter exchange, and at the level
of our model, centralization of DNA is expected under molec-
ular crowding. Also, considering a flexible chain confined in a

crowded spherical cavity, our model may explain the simula-
tion results by Shin et al.15 If we view the chain coil as a soft-
boundary sphere allowing crowders to penetrate it, the polymer
chain may find its preferential position in the inner cavity as
shown in their work.15 Our future work will be focused on
how the detailed interactions between the larger particle and
crowders may impact the preferential location of the larger
particle like the cellular nucleus. Meanwhile we will test the
possibility to further extend the integral equation to investigate
the condition more close to the length scale and the complexity
of a biological cell. Most importantly, the boundary where the
large sphere starts to migrate from the cavity periphery into
the inner cavity will be elucidated by integrating the current
work with the mean field theories from our previous studies
in characterizing such a boundary.16,29 The boundary can be
a complicated function with crowder size, crowder density,
cavity size, etc., which will provide insights into the nature of
transition.
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