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ABSTRACT: We report the spontaneous formation of a
characteristic periodic pattern through the phase separation of a
tripolymer solution comprising polyethylene-glycol (PEG)/dex-
tran (DEX)/gelatin. When this tripolymer solution is introduced
into a glass capillary with a PEG-coated inner surface, we observe
the time-dependent growth of microphase separation. Remarkably,
a self-organized, periodic alignment of DEX- and gelatin-rich
microdroplets ensues, surrounded by a PEG-rich phase. This
pattern demonstrates considerable stability, enduring for at least 8
h. The fundamental characteristics of the experimentally observed
periodic alignment are successfully replicated via numerical
simulations using a Cahn−Hilliard model underpinned by a set
of simple, theoretically derived equations. We propose that this type of kinetically stabilized periodic patterning can be produced
across a broad range of phase-separation systems by selecting appropriate boundary conditions such as at the surface within a narrow
channel.

Research into the spatial patterns arising from phase
transitions and aggregations in polymer systems has been

vigorously pursued from both theoretical and experimental
perspectives.1−19 Commonly, in first-order phase transi-
tions,7−10 excluding critical phenomena, such as spinodal
decomposition11−15 and nucleation and growth,16−18 the
spatial scale of the pattern tends to increase, or coarsen, over
time. Consequently, transient microscopic patterns evolve
during phase separation. To halt the coarsening and capture
the pattern at a microscopic scale, a rapid decrease in
temperature is often employed.20−23 However, this approach
typically results in a disordered microstructure, as observed in
glass transitions,24−30 for example. Conversely, our recent
findings reveal the spontaneous alignment of uniformly sized
microdroplets within a quasi-one-dimensional confinement
(quasi-1D). This pattern, emerging from the phase separation
of two types of hydrophilic polymers in water within a
capillary, organizes itself.31,32 In this present study, we
demonstrate that a periodic alignment of binary microdroplets,
each surrounded by a different polymer solution, arises from
the phase separation of an aqueous tripolymer solution in a
capillary. Recently, in the studies concerning coacervate
formation, generation of various specific spatial patterns with
polydispersity have been reported.19,33−38 It is particularly
notable that the periodic pattern formation of our study occurs
in a thermodynamically closed system, which is in contrast to
the pattern formation observed in thermodynamically open
systems, such as the reaction-diffusion system responsible for
Turing patterns.39−42 In essence, the spatial periodic pattern in

our system is kinetically stable, persisting without the need for
a continuous input of energy or materials, distinguishing it
from the dynamics of patterning in reaction-diffusion systems.

Polyethylene-glycol (PEG) with an average molecular
weight (MW) of 6000, dextran (DEX, MW: 200,000), and
gelatin were purchased from Fujifilm Wako Pure Chemical
Industries (Osaka, Japan). Three types of solutions with
different compositions were prepared by mixing the polymers
with fully deionized water. The compositions were (i) 4.2 wt %
(PEG)/3.3 wt % (DEX)/5.0 wt % (gelatin), (ii) 3.9 wt %/3.1
wt %/4.7 wt %, and (iii) 3.6 wt %/2.9 wt %/4.3 wt %. We thus
chose the fixed relative compositions of PEG/DEX/gelatin
with a ratio of 5:4:6 in weight. In these compositions of (i)−
(iii), we confirmed that macroscopic phase separation with
three different phases is generated in the bulk for the
mechanically mixed solution. It has been reported that phase
separation occurs between each polymeric pair in the
tripolymers.43−46 For fluorescence observation, DEX and
gelatin were labeled with TRITC-dextran (excitation wave-
length [Ex]: 550 nm; emission wavelength [Em]: 572 nm;
TdB Laboratories AB, Uppsala, Sweden) and FITC-I
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(fluorescein isothiocyanate isomer I; Ex: 488 nm; Em: 530 nm;
Sigma-Aldrich, St. Louis, MO, U.S.A.), respectively. A glass
capillary (Microcaps; Drummond, U.S.A.) with an inner
diameter of 140 or 280 μm and 32 mm in the long axis was
used. For PEG-coating of the inner wall of the capillary, poly-L-
lysine(20) graft[3,5] PEG(2) (PLL(20)-g[3,5]-PEG(2);
SuSoS AG, Switzerland) was used according to the reported
method.32

The three types of solution ((i), (ii), and (iii)) were
incubated at 60 °C and mixed further using a vortex mixer until
they looked cloudy. The solution thus mixed by mechanical
stirring was then sucked up into the PEG-coated capillary.
Both ends of the capillary were sealed to avoid leakage and
evaporation of the solution. For fluorescence microscopy
(Olympus IX71; Olympus Co., Tokyo, Japan), the capillaries
were maintained horizontally on a heat stage (TPi-CKTS;
Tokai hit, Shizuoka, Japan) at 60 °C. The images were
obtained with a complementary metal oxide semiconductor
(CMOS) digital camera (DP74; Olympus Co., Tokyo, Japan).
For centrifugation, Sigma 1−14 (SGM10015; Sigma, Kanaga-
wa, Japan) was used.

Figure 1a illustrates the progression of phase separation
within the PEG-coated capillary, which shows a preferential
attraction of the PEG-rich phase to the surface over the other
polymers. The times listed represent the duration elapsed since
the commencement of microscopy observation, which occurs

approximately 60 s after phase separation begins. The red,
green, and black (no fluorescence) areas denote the DEX-,
gelatin-, and PEG-rich phases, respectively. In the case of a
capillary with an inner diameter of 140 μm and composition
(i), the PEG-rich phase moistened the inner wall in the very
initial stage (0 s). At this juncture, the DEX/gelatin phases,
being repelled from the inner wall, underwent phase separation
to form droplets that increased in size. The linear arrangement
of the DEX-rich droplets started to take shape before that of
the gelatin-rich droplets (at 40 s). The gelatin-rich droplets
expanded, and a periodic alignment of DEX- and gelatin-rich
droplets within the PEG-rich solution spontaneously estab-
lished itself (120 s). Although the rate of pattern formation
varied depending on the capillary diameter and the mixture’s
composition, the ultimate pattern remained consistent:
patterns across different capillary diameters shared a similarity
when scaled by diameter, and pattern formation occurred more
swiftly in narrower capillaries. Figure 1b presents a
spatiotemporal plot derived from images taken along a
horizontal line bisecting the center of the capillary (as shown
in Figure 1a). These plots confirm the generated pattern’s
stability for 10 min. The experimental results for longer time
periods are shown in Figure S1 (Supporting Information),
indicating that the periodic structure is maintained for 8 h after
formation and changed somewhat at 24 h. A slight drift in
droplet position was observed, likely due to a mild flow within

Figure 1. Spontaneous pattern formation in a three-phase system (PEG+DEX+gelatin) within a PEG-coated glass capillary. The compositions of
the PEG/DEX/gelatin are (i) 4.2 wt %/3.3 wt %/5.0 wt %; (ii) 3.9 wt %/3.1 wt %/4.7 wt %; (iii) 3.6 wt %/2.9 wt %/4.3 wt %. The red, green, and
black (no fluorescence) regions correspond to the DEX- (labeled with TRITC-dextran), gelatin- (labeled with FITC-I) and PEG-rich phases,
respectively. White dashed lines indicate the position of the inner glass wall. (a) Snapshots of the solution inside the capillary (inner diameter: 140
μm, 280 μm) at the different times. (b) Spatiotemporal plot of (a). (c) Macroscopic phase separation of the PEG/DEX/gelatin solution in bulk.
The composition of the PEG/DEX/gelatin is 4.2 wt %/3.3 wt %/5.0 wt %. Upper: Before centrifugation (at 60 °C in the incubator and for 20 min
after mixing the solution); Lower: After centrifugation for 1 min (3000 rpm). The top, middle, and bottom phases correspond to the PEG-, gelatin-,
and DEX-rich phases, respectively. The right panels show the fluorescence microscopy of the top (PEG-rich) phase on the glass slide.

ACS Macro Letters pubs.acs.org/macroletters Letter

https://doi.org/10.1021/acsmacrolett.3c00689
ACS Macro Lett. 2024, 13, 207−211

208

https://pubs.acs.org/doi/suppl/10.1021/acsmacrolett.3c00689/suppl_file/mz3c00689_si_001.pdf
https://pubs.acs.org/doi/10.1021/acsmacrolett.3c00689?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsmacrolett.3c00689?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsmacrolett.3c00689?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsmacrolett.3c00689?fig=fig1&ref=pdf
pubs.acs.org/macroletters?ref=pdf
https://doi.org/10.1021/acsmacrolett.3c00689?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


the capillary. Figure 1c illustrates the macroscopic phase
separation in a bulk solution before (top) and after (lower)
centrifugation. The composition of the PEG/DEX/gelatin is
4.2 wt % PEG, 3.3 wt % DEX, and 5.0 wt % gelatin, which
corresponds to composition (i) in Figure 1a. The top, middle,
and bottom phases correspond to the PEG-, gelatin-, and DEX-
rich phases, respectively. The right panels of Figures 1c show
the fluorescence microscopy of the top (PEG-rich) phase
observed on the glass slide. The solution without centrifuga-
tion is incompletely divided into three phases at 20 min after
mixing the solution. In the upper microscopic image, the DEX-
and gelatin-rich droplets remained in the PEG-rich phase. After
centrifugation for 1 min (3000 rpm), the macroscopic phase
separation is clearly observed. In the lower microscopic image,
the number of DEX-rich droplets was reduced. The pattern
formed by the phase separation in bulk differs from those
observed in Figure 1a.

Figure 2 shows the comparison in the pattern formation
between the PEG/DEX/gelatin (three)- and the PEG/DEX

(two)-polymer solution in a capillary (inner diameter: 140
μm). The compositions are (a) PEG/DEX/gelatin = 4.2 wt
%/3.3 wt %/5.0 wt % corresponding to (i) and (b) PEG/DEX
= 4.2 wt %/3.3 wt %. Figure 2a is the same as that in Figure 1a-
(i) at 600 s. Figure 2b shows that the PEG-rich phase was
attracted to the inner wall, and the cylindrical structure of the
DEX-rich phase was generated in the center of the capillary via
two-phase separation at 600 s.

Numerical modeling was performed to assess the generation
mechanism of periodic pattern through the three- (PEG/
DEX/gelatin) or two- (PEG/DEX) phase separation in the
capillary shown in Figure 2a,b. For the two-phase separation,
the Cahn−Hilliard equation, eq 1, is applied as follows:

i
k
jjjj

y
{
zzzzt

M
F

c=
(1)

where Mc = (D0/RT) is the diffusivity (F: free energy, t: time,
D0: diffusion constant). The relative ratio of DEX to the total
PEG+DEX solution is represented as parameter η, where η =
[0, 1]. η = 0 corresponds to the state without DEX. The free
energy F can be expressed as

i
k
jjj y

{
zzzF RT L Vln (1 )ln(1 ) (1 )

2
d2= [ + ] + + | |

(2)

where L and α denote the parameters representing the
interaction and interfacial energy between PEG and DEX
phases, respectively (V: volume).

For the three-phase solution, one way to model three-phase
solutions is to derive a Cahn−Hilliard-type equation by fitting
the free energy functional of the three polymer components,
but this suffers from a large number of tunable parameters. In
this study, we carefully observed the phase separation
dynamics (Figure 1a) and found that a PEG-rich phase
appeared early near the glass surface, followed by phase
separation between a DEX-rich phase and a gelatin-rich phase
at the center of the glass tube. Based on this experimental
result, we simulated the early and late stages of phase
separation using eqs 1 and 2 and eqs 3 and 4, respectively.
Using these equations greatly reduces the number of tunable
parameters and makes it much easier to gain a basic
understanding of the three-phase separation dynamics, as
observed in this study. Therefore, the phase separation of
three-solutions was divided into the two stages considering the
results of Figure 1a, for the sake of simplicity, by avoiding the
tentative parametrizations on many parameters in complicated
equations. In the first stage, the phase separation between the
PEG and DEX+gelatin phases was calculated using eqs 1 and 2
as if in the two-phase separation system. In this case, parameter
η represents the relative ratio of DEX+gelatin to PEG+DEX
+gelatin solution, where η = [0, 1]. For the second stage, let η
= ξ + (η − ξ) (ξ: DEX, η − ξ: gelatin) and γ = ξ/η. Equations
3 and 4 were used as extensions of eqs 1 and 2, respectively.

i
k
jjjj
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{
zzzzt

M
F

c=
(3)

where Mc′ = η2(D0/RT) denotes the diffusivity. Free energy F′
can be expressed as follows:

i
k
jjjj

y
{
zzzzF RT L Vln (1 )ln(1 ) (1 )

2
d2= [ + ] + + | |

(4)

Further numerical details with the boundary conditions and
parameters are provided in the Supporting Information.

Figure 2c,d shows the numerical results corresponding to the
time periods of 10 min. The order parameters are represented
as the color bar. Figure 2c shows the calculation results of the
three-phase separation using eqs 1−4. Furthermore, black, red,
and green regions correspond to η < 0.5 (PEG-rich), γ < 0.5
(DEX-rich), and γ > 0.5 (gelatin-rich) phases, respectively.
The periodic alignment of the DEX and gelatin phase
surrounded by a PEG-rich solution is developed. Figure 2d
shows the result of the two-phase separation using eqs 1 and 2.
The PEG-rich phase was attracted to the inner wall and
cylindrical structure of the DEX-rich phase was generated in
the center. The black and red regions correspond to η < 0.5

Figure 2. Pattern formation through the phase separation of the
three- (PEG+DEX+gelatin) and two- (PEG+DEX) polymer solutions
in the PEG-coated capillary (inner diameter: 140 μm). (a, b)
Experimental results. The red, green, and black (no fluorescence)
regions correspond to the DEX- (labeled with TRITC-dextran),
gelatin- (labeled with FITC-I), and PEG-rich phases, respectively.
The white dashed lines indicate the position of the inner glass wall.
(a) The expanded image of Figure 1a-(i) at 600 s. (b) The two-phase
separation (PEG/DEX = 4.2 wt %/3.3 wt %). (c, d) Numerical results
on the pattern formation through the phase separation under quasi-
one-dimensional confinement. The order parameters are represented
as the color bar. The light blue area represents the capillary wall. (c)
The three-phase (PEG/DEX/gelatin) separation (eqs 1−4). The
calculation was sequential between PEG and DEX+gelatin and
between DEX and gelatin. The black, red, and green regions
corresponding to η < 0.5 (PEG-rich), γ < 0.5 (DEX-rich), and γ >
0.5 (gelatin-rich) phases, respectively. (d) The two-phase (PEG/
DEX) separation (eqs 1 and 2). The black and red regions correspond
to η < 0.5 (PEG-rich) and η > 0.5 (DEX-rich) phases, respectively.
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(PEG-rich) and η > 0.5 (DEX-rich) phases, respectively. The
calculations of the three- or two-phase separation qualitatively
reproduce the experimental results. It should be noted that the
formation of periodic patterns is a unique phenomenon only in
the presence of three phases in quasi-1D confinement with the
chemical affinity of the inner surface.

To date, the mechanisms of autonomous morphogenesis, as
exemplified in living organisms, have been actively studied by
proposing various theoretically different models. A well-known
example of such mechanisms is the Turing pattern, a
mathematical representation of a dissipative system charac-
terized by reaction-diffusion kinetics. In Turing patterns, a
periodic pattern emerges from the evolution of a particular
wavenumber driven by activator-inhibitor dynamics. Con-
sequently, if the influx of reactive substrates halts or undergoes
significant alteration, then the spatial pattern may collapse or
vanish. Conversely, lamellar or globular patterns develop
during the initial stages of phase separations, where the spatial
structure is marked by a certain wavenumber, for instance, in
spinodal kinetics. These types of patterns can arise even within
a closed system. However, the micropatterns established in the
early stages typically vanish over time due to the merging of
microdomains and Ostwald ripening, leading to macroscopic
phase separation. Hence, achieving a stable micropattern
through such phase separations is often not feasible. The
present study addresses this challenge by utilizing the confining
effects of a capillary, which aids in preserving the micropatterns
that emerge.

In conclusion, the periodic pattern of binary droplets is
produced via the phase separation of a tripolymer solution.
The generated pattern is maintained, at least, for 8 h (Figure
S1). The formation of this type of a pattern does not occur in
the absence of quasi-1D confinement or without the specific
tripolymers. These phenomena are aptly described by
theoretical calculations rooted in the Cahn−Hilliard mecha-
nism. Stable periodic structures can emerge spontaneously
within a nonequilibrium closed system. This scenario could
have implications for biological systems and other natural
phenomena, meriting additional research.
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