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h i g h l i g h t s

• Confined large and multiple small granular particles are studied under vibration.
• At higher densities, large particles shift from cavity boundary to cavity interior.
• This universal behavior is induced by the size disparity of the mixture.
• A simple entropic model is developed to elucidate experimental observations.
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a b s t r a c t

Fluctuations are ubiquitous in both microscopic and macroscopic systems, and an investigation of
confined particles under fluctuations is relevant to how living cells on the earth maintain their lives.
Inspired by biological cells, we conduct the experiment through a very simple fluctuating system
containing one or several large spherical granular particles and multiple smaller ones confined on a
cylindrical dish under vertical vibration. We find a universal behavior that large particles preferentially
locate in cavity interior due to the fact that large particles are depleted from the cavity wall by small
spheres under vertical vibration in the actual experiment. This universal behavior can be understood from
the standpoint of entropy.

© 2016 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Fluctuations are present almost ubiquitously in both macro-
scopic and microscopic systems. How does external fluctuation
lead to the emergence of a stable pattern? This is still a large tar-
get in the research of modern physics, including astronomy, fluidic
systems, living matters, etc. Industrially, it has been a common
practice to use fluctuations as a way to facilitate packing of grains,
foods, and pharmaceutical powders at macroscopic scale, for ex-
ample [1,2]. In nature, biological cells at microscopic scale are un-
der constant thermal and external fluctuations, and life activities
are regulated within confined and crowded cells with 20%–40%
(w/w) of polymeric species [3,4]. The nucleus is a prominent or-
ganelle in the length scale of a highly crowded eukaryotic cell,
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and its location is commonly observed in the interior of a bio-
logic cell away from the boundary of cellularmembranes. A similar
structural feature is found in a cellular nucleus. Within a crowded
nucleus, a dense sphere-like nucleolus, consisting of RNA and
proteins, forms a significantly recognizable structure during the in-
terphase of a cell cycle [5], which also tends to situate in the inner
nuclear region away from membranes.

In fact, the above picture that large organelles distribute away
from the confined membrane is somehow counter-intuitive. Ac-
cording to the entropic depletion force effect suggested by Asakura
and Oosawa, [6], the large particle such as nucleus in cells or nu-
cleolus in nuclei should preferentially localize next to the confined
boundary, that is,membranes. Onemay argue that the complex na-
ture inside a cell or a nucleus may induce some enthalpic energies
to surpass entropic effect. However, within the highly crowded cell
or nucleus, excluded volume interactions remain a crucial compo-
nent [7] to regulate their heterogeneous structure. The entropic
contribution deserves a detailed examination [3,8–10].
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Here, we conduct an experiment by using the binary mixture
of rigid granular particles confined on a 2D cylindrical disk,
a system driven by cellular materials and environment, where
large and small particles represent large organelles and crowders,
respectively. Fluctuations are introduced by incorporating vertical
vibration to induce constant collisions among particles similar to
thermal motion in liquid.

Besides the biological point of view, our experiment renders
an opportunity to examine the structure of the rigid granular
particles in a dissipative system.Under vibration, granular particles
gain energy, but the energy of each particle is dissipated to the
environment due to frictions. It has been pointed out by Komatsu
and Tanaka that such a dissipative system is far fromequilibrium in
nature, and energy dissipation determines the state selection [11].
The immediate question to be addressed is: after our system under
vibration reaches a steady state, what physical state should be
present with size-disparity granular particles. The next question
is how the steady state in our experimental result should be
analyzed.

This manuscript is organized as follows. An overview of our
experimental system is first given, and then experiment results are
presented followed by model studies based on entropic argument
for data analysis. Monte Carlo simulation is summarized in the
Appendix A.

2. Experimental system

Motivated by biological cells and 2D granular systems, we
elucidate the interplay between excluded volume interaction and
fluctuation for confined particles via a ‘‘real-life’’ experiment by
mixing NL large spherical granular particles of diameter dL with
NS smaller ones of diameter dS confined in a cylindrical dish of
diameter D. In analogy with a cell, the large sphere mimics the
large organelle in a cell or in a nucleus, and small spheres model
other smaller cellular substances as crowders. All the interparticle
and particle–wall interactions are at the level of excluded volume
interaction. In our experiment, dL is fixed at 10 mm and D is
chosen to be 60 mm. The confined mixture is then subject to
regular vertical vibration, similar to the work by Pacheco-Vazquez
et al. [12]. The vertical vibration can be partly viewed as a
greatly simplified way to model non-uniform fluctuations around
cellular membranes, in which some area of cellular membranes
undergoes more fluctuation than others, such as matter exchange
or membrane undulation.

The experimental system is shown in Fig. 1(a) and (b). We set
vibration frequency f = 120 Hz and amplitude A = 55 µm
that produce enough acceleration to bounce granular particles up
from the dish surface. Note that our conclusion is insensitive to
the choice of f and A. This vibration force first induces frequent
collisions among granular particles like the thermal motion of
cellular particles. Also, the vibration motion actually triggers an
additional degree of freedom for the vertical translational motion
of confined particles. To quantify the crowding level in a simple
manner, we define ‘‘packing fraction’’ as the projected area of
the large and small spheres onto the cavity surface, given by
η = (NSd2S + NLd2L )/D

2. Despite its near two-dimensional
nature, this experiment provides the major components like those
in a confined cell or nucleus, and enables us to systematically
investigate various effects that switch the large sphere from the
confined boundary to the interior of the cavity based on excluded
volume interaction. Our experiment covers a wide density range
of granular particles from η = 0.1 to 0.66 (dilute to high density
state). In the high density state, our experiment is also suitable to
test the Brazil nut effect in which the large sphere shifts to the
top of the granular mixture under vibration [13–16]. A distinct
difference between the Brazil nut effect and our experiment is that
we place spheres on the same surface, which may be viewed as a
single-layer granular particles. In addition, there is no significant
effect due to gravitational force in our results, which is essentially
important in Brazil nut effect.

3. Experimental results

The real-time experimental trajectory of the large sphere is
obtained with long movies. Fig. 1 shows the typical snapshots at
time t = 0 and 540 s (left panel) and the trajectory of the large
sphere (right panel) for two distinct packing fractions η = 0.1
(with NS = 29) in (c) and 0.6 (with NS = 229) in (d) for NL = 1,
and the case of NL = 3 (with NS = 229) for η = 0.66 up to
t = 40 s in (e), when dL : dS = 10 : 3. Note that the dotted
circles in the trajectory plots indicate the outermost boundary
within the disk which the center of mass of a large sphere can
reach. For the lower η, the large sphere preferentially distributes
around the cavity boundary. Whereas, for the higher η, the large
sphere switches its preferential location to the inner cavity. For
NL = 3, we observe essentially the same trend as NL = 1 in
which large spheres preferentially distribute near the inner cavity
at higher crowding levels. It is clear that this is general behavior for
large spheres switching their preferential location from confined
boundary to cavity interior under the vibration experiment for
sufficiently crowded condition. In the following, our study will be
focused on the case of NL = 1 to reveal the physics behind this
universal behavior.

The trajectories shown in Fig. 1 are transformed into the spatial
density distribution function of the large sphere ρL by dividing the
circular disk into 6 layers. ρL is then determined via the histogram
of the large sphere located in each layer divided by the area of
a given layer. The thus obtained ρL allows us to quantify the
preferential localization of the large sphere for each condition. The
interplay between η and dS on the structure of the confined large
sphere is systematically studied from ρL in such a way that dL
and D are fixed, but dS and NS are varied. Fig. 2 plots the phase
diagram to summarize the specific localization of the large sphere
as a function of η and the size ratio dL/dS in (a) as well as the
typical density distribution function for η = 0.1, 0.2, and 0.6 when
dL : dS = 10 : 3 in (b), corresponding to the three points ((i), (ii),
and (iii)) highlighted in Fig. 2(a) with boxes. In the phase diagram,
the preferential localization of the large sphere can be divided into
three categories: (1) near the cavity boundary (denoted by #);
(2) near the cavity boundary and the inner region of the cavity
(denoted byH#); (3) in the inner region of the cavity (denoted by ).
Also, the dashed line in Fig. 2(a) is the phase boundary predicted by
a theoreticalmodel to be discussed in the context of Fig. 4, inwhich
the large sphere distributes near equally around cavity boundary
and inner cavity (denoted by H# in Fig. 2(a)). Fig. 2(a) indicates that
as η and/or dL/dS ratio (reduction of the size of small spheres) are
increased, the large sphere tends to localize in the inner cavity. By
decreasing the size of small spheres, it enhances migration of the
large sphere towards the inner cavity, and such a finding agrees
with the literature result that smaller crowders promote crowding
effect [7].

The three categories of specific localization of the large sphere
are further illustrated in Fig. 2(b). For the low packing fraction
(η = 0.1) in Fig. 2(b), the large particle exhibits a significantly high
probability around the cavity wall, which is consistent with the
entropic depletion effect suggested by Asakura and Oosawa [6]. As
η is increased to 0.2, the large sphere exhibits a similar probability
to distribute near the cavity boundary and the inner cavity. For
η = 0.6, the large sphere distributes away from the cavity wall,
and has a high spatial density near the central region of the cavity.
This result coincideswith the commonpicture that the nucleus and
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Fig. 1. Schematic representations of the experimental system with bird view in (a) and side view in (b); typical snapshots at 0 and 540 s (left panel) and the real-time
trajectories of the large sphere (right panel) for two distinct packing fractions η = 0.1 (NL = 1 and NS = 29) in (c) and 0.6 (NL = 1 and NS = 229) in (d), and the case of
NL = 3 and NS = 229 for η = 0.66 up to t = 40 s in (e), where dL = 10 mm, dS = 3 mm and D = 60 mm. The scale bar is 10 mm. Note that the dotted circles in the
trajectory plots indicate the outermost boundary which can be reached by the center of mass of a large sphere within the cylindrical disk.
the nucleolus situate in the region away from the membrane of a
biological cell and a nucleus, respectively.

The dynamic origin of the switching process in our experiment
is tested by analyzing the kinetic energy ratio before and after a
sphere colliding with the cavity wall by using a high speed camera
that generates 500 frames/s. Fig. 3 plots the mean kinetic energy
ratio of a particle with η before and after it bounces from the cavity
wall for a large sphere (denoted by ) and a small sphere (denoted
by #) when dL : dS = 10 : 3 in (a), and a series of snapshots
(extracted from the video clip in the supplementary material,
Appendix B) and schematic explanation of our observation at η =

0.6 in (b). At the low η(=0.1), the mean kinetic energy ratio is
around unity for both large and small spheres. As η increases, the
mean kinetic energy ratio of the large sphere increases and exceeds
that of a small sphere at around η = 0.18. At high η, the large
sphere has a relatively higher kinetic energy gain after bouncing
from the area of the wall compared to a small sphere. Above η =
0.3, the kinetic energy ratio becomes leveled off for both large and
small spheres.

The snapshots in Fig. 3(b) show that at a high crowding level,
the large sphere is lifted to the top of small spheres, and moves
inwards to the inner cavity. The starting point of this lifting process
occurs when the large sphere is near the cavity wall. As illustrated
in Fig. 3(b), the large sphere experiences frequent collisions from
small spheres. When the large sphere is near the wall, the vertical
motion of small spheres generated by vibration in the experiment
imposes a lifting force on the large sphere to raise it to the top of
small spheres. The collision energy transferred from small spheres
to the large sphere enhances the kinetic energy of the large sphere
when it bounces from the area near the wall. Whereas, for a
small sphere, the kinetic energy may dissipate quickly and evenly
to surrounding spheres and the cavity wall. The friction from
the cavity wall is a possible energy dissipation pathway to slow
down small spheres near the boundary. As a result, these spheres
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Fig. 2. Experimental phase diagram for specific localization of the large sphere as a function of packing fraction η and the size ratio dL/dS in (a), and the typical density
distribution function of the large sphere ρL for three different packing fractions η = 0.1, 0.2, and 0.6 when dL : dS = 10 : 3 in (b) with error bars, corresponding to the three
points ((i), (ii), and (iii)) highlighted in (a) with boxes. The dashed line in (a) is the approximate boundary to divide the preferential localization of the large sphere predicted
by a theoretical model to be discuss in the context of Fig. 4. Note that the half-filled circlesH# denote the regime of the experimental phase boundary where the large sphere
preferentially distributes both near the wall and the interior of the cavity.
around the wall act just like that they are under depletion forces.
Moreover, our experiment represents the single-layer granular
particles, and our observation of the large sphere ‘‘floating’’ above
small spheres is consistent with the spontaneous segregation on
the Brazil nut effect [13–15].Within a finite cavity, our experiment
suggests a general trend in the single layer Brazil nut effect that can
be initiated from the cavity boundary.

4. Model studies

The vibration experiment creates a dissipative system in which
energy gained by granular particles is dissipated into heat due to
friction forces on the surface of the disk. Nevertheless, the small
fluctuating system of our experiment quickly reaches a steady
state, and the thus obtained density distribution functions become
time-independent. Since the granular particles in our experiment
are rigid, it is instructive to elucidate our findings by considering
the athermal hard sphere model dominated by entropy, prior to
more complex dynamic studies.

In the vibration experiment, the large sphere is basically
‘‘desorbed’’ from the cavity wall, and the entropy of small spheres
on the two-dimensional surface becomes crucial to understand
the structure of confined particles under crowding condition
even with vertical vibration. These arguments are consistent with
our Monte Carlo simulation results based on the hard sphere
model in the Appendix A in the following fashion. First, the large
particle is excluded from the cavity wall under crowding and
vertical fluctuation (to account for extra degrees of freedom due to
vibration). Secondly, the simulated density distribution function of
small particles displays only a secondary change after the vertical
fluctuation is incorporated. The 2D configurational entropy of
small spheres (due to free space) becomes a reasonable order
parameter to study the preferential location of the large sphere.
The packing fraction defined in thiswork based on the 2Dprojected
area of individual spheres onto the cavity surface play the essential
role for our study of the above 2D order parameter.
Experimentally, the cavity wall may have two major impacts
on structure: (1) it induces depletion forces on spheres, and
(2) it is an additional energy dissipation pathway to dissipate
energy of a particle in our non-equilibrium system, both of
which can act like attractive forces and may be enhanced
for small spheres at higher densities. To model these possible
collective forces, we introduced an entropic two-state model
phenomenologically. For lower particle densities, the cavity wall
induces weak adsorption on particles, and this model (Model A)
imposes no adsorption on particles (i.e., more fluctuation allowed
for a particle near wall), whereas at higher densities, an adsorption
layer is introduced to Model B and the number of adsorbed
particles depends on particle densities. Model A allows the large
sphere to be around the cavity wall, but Model B impedes the large
sphere to access the region of cavity boundary. The fundamental
question lies in how to determine the characteristic density to
discern low density regime from high density regime. Such a
distinction is insightful to elucidate the preferential location of the
large sphere, that is, the large sphere prefers to be near wall at
lower densities and away fromwall at higher densities. At near ηcrt ,
the large sphere displays similar probability in the cavity interior
and the cavity wall, as shown in Fig. 2(b).

The entropic expression of Model A with small spheres that are
fully ‘‘desorb’’ from the cavity wall and experience no depletion
forces near the wall takes the following form.

SA ∼ kBNS ln
π
4 D

2
− πNSd2S
NS

(1)

where kB is the Boltzmann constant. While small spheres are
adsorbed to the surface due to the depletion force from the wall,
the entropy is modified to the following form (SB) with Nw small
spheres adsorbed to the wall. In Model (B) with small spheres
that are under depletion force from the wall, and are partially
‘‘adsorbed’’ onto the cavity wall, its entropy reads

SB ∼ kB(NS − Nw) ln
π
4 D

2
− πNSd2S + αNw

NS − Nw

(2)
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Fig. 3. Comparison of themean kinetic energy ratio of a particle before and after bouncing from the cavity wall for a large sphere (denoted by ) and a small sphere (denoted
by#) with different packing fractions when dL : dS = 10 : 3 in (a), and snapshots and schematic explanation for our observation at η = 0.6 in (b). The scale bar is 10 mm.
where α is to account for the difference between the excluded
volume of a particle away from the wall and of a particle next to
the cavity wall, which reads

α = 2r2θ −
1
2
{R2ϕ

−


[R2 + (2r)2 + (R − r)2]2 − 2[R4 + (2r)4 + (R − r)4]}

(3)

where ϕ = 2 cos−1
{[R2

+ (R − r)2 − (2r)2]/2R(R − r)}; θ =

cos−1(1 − x2/8r2); x =

2R2(1 − cosϕ); R = D/2; r = dS/2.

The approximation in Model B is that the particles not adsorbed
onto the cavity wall have the excluded volume identical to those
particles in Model A. The optimal Nw to maximize SB for a given NS
is obtained from dSB/dNw = 0. Note that the ‘‘depletion force’’ in
Model (B) captures the possible energy dissipation pathway in our
vibration experiment in which small spheres are driven towards
the cavity wall because the friction from the cavity wall. Even
though the large sphere is not explicitly incorporated in ourmodel,
our analysis provides a useful viewpoint as a way of elucidating
the possibility to place a large sphere around the boundary of the
cavity (or to exclude the large sphere from the boundary) due
to its size disparity while small spheres are in equilibrium. This
picture is consistent with the experimental process in that all the
spheres are under spatial fluctuation induced by vibration, and the
large sphere tends to find a location not frequently disturbed by
fluctuating small spheres, which is sensitive to the crowding level
of the system. The relative kinetics between the large sphere and
small spheres is, thus, indirectly embedded in the model study.

In our analysis, we suggest that characteristic density (corre-
sponding to the density that leads to ηcrt ) should be at the point
when these two models exhibit the same entropy. It indicates that
bothmodels have identical statistical weight at this condition. Fur-
thermore, for densities below ηcrt , the entropy of Model A is lower
than that of Model B, the attractive forces from wall are weak for
small spheres, and vice versa for densities above ηcrt .

We first plot the calculated entropy of the twomodels as a func-
tion ofη, and illustrate how the crossing packing fraction (i.e., char-
acteristic density) ηcrt is determined. Note that η is directly
proportional to NS . Fig. 4(a) compares the entropy of the twomod-
els against packing fraction η for the case D : dS = 60 : 3. The
crossover between SA and SB occurs at around the crossing packing
fraction ηcrt = 0.22. After the packing fraction η exceeds ηcrt , SB
becomes greater than SA (thick solid line in Fig. 4(a)) because the
adsorbed spheres create sufficient free space for the rest of spheres
away from the wall. In a separate calculation, we have further ex-
plored how the number of adsorbed particles in Model B depends
on the total particle number (or density), and the results are shown
in Fig. 4(b) and (c). Fig. 4(b) compares the number of small spheres
adsorbed onto the wall Nw for a series of NS between model calcu-
lations, denoted by the line, and experimental measurement, de-
noted by symbols with error bars. Without any fitting parameter,
the calculated NW surprisingly agree well with our experimental
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measurement in a near quantitative fashion in Fig. 4(b). This re-
sult shows that the simplemodel based on entropic argument cap-
tures the essential physics of our experiment. Fig. 4(c) displays the
same plot as in Fig. 4(b) in which the schematics of possible con-
figuration for a few selected NS are plotted. Note that ηcrt obtained
from Fig. 4(a) is also included in Fig. 4(c) for comparison. When NS
is small, Nw is basically equal to zero since the system entropy is
maintained by random distribution of small spheres. As NS is in-
creased, Nw rises linearly, and becomes leveled off for the large
enough NS due to the saturation of adsorbed spheres on the cavity
wall. Based on the above twomodels, the crossing packing fraction
ηcrt in Fig. 4(a) is corresponding to the NS value in the middle of
the straight line as Nw increases from zero to its saturation value.
Fig. 4(d) and (e), respectively, plot the predicted crossing packing
fraction ηcrt as a function of the size of small spheres when the
dish diameter D = 60 mm and as a function of the dish diame-
ter when dS = 3 mm. The model predicts that ηcrt increases as
the size of small spheres increases in Fig. 4(d). Namely, the small
spheres with a smaller size exhibits a greater effect on the entropy
change in Model (B). Meanwhile, in Fig. 4(e), the model predicts
that ηcrt is less sensitive to D compared to the effect of the size
of crowders. As shown in Fig. 2(a), without any fitting parameter,
the calculated ηcrt , denoted by dashed line, is consistent with the
experimental phase boundary, denoted by H#. Such a result indi-
cates that the two-dimensional packing entropy of confined small
spheres sustainsmigration of the large sphere from the region near
the cavity wall to the interior of the cavity. With the vertical fluc-
tuation, the large sphere has little contribution to packing entropy
because under crowded condition, it detaches from the cavity wall
and gains entropy by moving itself on the top of small spheres, as
shown in Fig. 3.

One may speculate that the granular systems should behave
differently from the usual physicochemical systems such as
homogeneous gases and liquids composed of a large number of
small molecules. In the present study, we have examined the
validity on the simple model with entropy argument, which is
under stationary fluctuation with the expectation that granule
particles may fluctuate over the entire phase space consisting of
a great number of positional and motional degrees of freedom. As
a result, we have obtained essentially the same behavior on the
specific localization of the large sphere in Figs. 2(a) and 4(b).

Alternatively, it is a tempting approach to interpret the
experimental trend, based on the numerical model following
the framework of fluid dynamics. Consequently, one can argue
the specific localization of the large sphere from the aspect of
(repulsive) hydrodynamic interactions, HIs [17], by which the
depletion attraction between the large sphere and the cavity wall
is weakened. In the present study, we have found an interesting
phenomenon on the switching of the localization of a large sphere.
In order to interpret the observed experimental trend, we have
adapted the simple argument on the evaluation of entropy. As
mentioned above, such a framework of theoretical consideration
provides a clear physical picture into our observation. The problem
to adapt HIs is that, for the experimental conditions with a
relatively small number of spheres as in our case, the model with
HIs becomes unreliable. It may be interesting, in a near future, to
combine the theoretical arguments between the simple model in
this work and the current fluidic modeling.

Furthermore, in the present study, we take into account of the
fluctuating behavior of spheres with the size larger than 1 mm.
Such consideration seems to be against the current argument
on the modeling of Brazil-nut effect. The difference on the
effect of fluctuation is attributable to the difference in the main
factor to cause the ‘‘segregation’’. In Brazil-nut effect, gravity is
essential and the effect of gravity becomes negligible for smaller
particles less than 1 mm. Whereas, the segregation of the present
experiment, gravitational effect is minimum. Instead, collision
between particles and also with the wall play the main role as the
thermal motion in liquid state.
Fig. 4. Comparison of the calculated entropy of the two models against packing
fraction η when D : dS = 60 : 3 in (a); the corresponding number of small
spheres Nw adsorbed onto the cavity wall from (a) a function of NS in (b) and
(c); the predicted crossover packing fraction ηcrt from Model (B) against dS when
D = 60mm and againstDwhen dS = 3mm in (d) and in (e), respectively. In (b), we
comparemodel calculation, denoted by the linewith the experimentmeasurement,
denoted by symbols with error bars.

5. Conclusions

We conduct the experiment through a very simple fluctuating
system containing one or several large spherical granular particles
and multiple smaller ones confined on a cylindrical dish under
vertical vibration. We find a universal behavior emerges for the
steady state, that is, large particles preferentially locate in cavity
interior due to the fact that large particles are depleted from the
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cavity wall by small spheres under vertical vibration in the actual
experiment. This universal behavior can be understood from the
standpoint of 2D configurational entropy. To further improve our
quantitative understanding, our future work aims at elucidation
of energy dissipation mechanisms in our experimental system. For
theoretical analysis, a possible scheme is to introduce an effective
interaction between spheres and the cavity wall into our current
model. Further, a systematic study is awaited to investigate how
such an interaction depends on particle density, particle size and
vibration frequency.
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Appendix A. Monte Carlo simulation

In contrast to the picture of a two-dimensional liquid, an
additional degree freedom is present in our experiment through
vertical vibration, that is, the translational motion perpendicular
to the dish surface. We investigate its qualitative effect on the
structure of mixture by using Monte Carlo simulation for two
models: (1) 2D model: a two-dimensional liquid consisting of one
large sphere of diameter dL and 60 small spheres of diameter dS
(=0.3dL) confined in a circular surface of diameter D of various
sizes. All the interactions are considered at the level of excluded
volume interaction including the wall–particle interaction. The
interaction potential between particles is given by

V (rij)
kBT

= 0 if r > rcij

= ∞ if r ≤ rcij (4)

where kB and T are the Boltzmann constant and temperature,
respectively; rij is the distance between particle i and particle j;
rcij is the nearest distance between two particles where rcSS = dS
between two smaller spheres and rcLS =

√
dLdS between a large and

a small sphere on the 2D dish surface. The particle–wall interaction
potential reads

Vi,wall(r)
kBT

= ∞ if r > (D − di)/2

= 0 if r ≤ (D − di)/2 (5)

where r is the radial distance on the two-dimensional circular
surface, di is the diameter of particle iwhere di = dL and dS for the
large sphere and small spheres, respectively. (2) Quasi-2D model:
small spheres and the large sphere randomly fluctuate along the z-
direction in the range 0.15–0.3dL and 0.5–0.7dL, respectively. This
allows small spheres tomove up a half of its diameter and the large
sphere to reach the top of small spheres roughly within the range
of the average altitude of small spheres. In the interaction potential
of Eq. (4), rcij is adjusted to (dL + dS)/2. In the simulation, the
density distribution function per particle is calculated by dividing
the circular disk into 60 layers. Onemay expect that in a living cell,
fluctuations are far more complex than the quasi-two-dimension
hard sphere liquid here [18]. Nevertheless, this greatly simplified
model is the starting point to reveal the effect of the additional
vertical fluctuation, as opposed to the 2D model, on the structure
of the mixture of rigid spheres.

Fig. A.1 compares the simulated density distribution function
of the large sphere of the two-dimensional liquid (2D model),
denoted by solid symbols, with that of the quasi-two-dimensional
Fig. A.1. Comparison of the simulated density distribution functions of the two-
dimensional liquid (solid symbols) with that of the quasi-two-dimensional liquid
(open symbols) for the large sphere (circles) and a small sphere (squares), in which
the spatial fluctuation along the z-direction is incorporated, vertical to the surface,
for different packing fractions η = 0.178 in (a), 0.331 in (b) and 0.683 in (c). Lines
are for eye guide.

liquid, denoted by open symbols for the large sphere (circles) and
a small spheres (squares), in which the spatial fluctuation along
the z-direction is incorporated (vertical to the surface) for different
packing fractions η = 0.178 in (a), 0.331 in (b) and 0.683 in (c).
In Fig. A.1(a), the peak of the large sphere, under the z-direction
fluctuation, corresponding to its direct contact with the wall,
diminishes compared to that of the two-dimensional model. In the
quasi-2Dmodel, the depletion force that drives the large sphere to
the cavity wall is now compromised by this extra degree freedom
of spheres due to the fluctuation along the z-direction. Also, the
large sphere distributes preferentially in the interior of the cavity
in the quasi-2Dmodel, whereas the probability of finding the large
sphere near the cavity becomes greater at the cavity wall in the
2D model. As the packing fraction is increased to η = 0.33 in
Fig. A.1(b), both models now show similar density profiles, that
is, the large sphere is preferentially localized near both the cavity
wall and the central region of the cavity. In the highest density
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case of Fig. A.1(c), the large sphere in bothmodels is excluded from
the cavitywall. Its density distribution function shows pronounced
liquid-like order with oscillatory pattern depending on the chosen
model, indicating that the extra degree freedom along z-direction
induces different local packing between the large sphere and small
spheres. Nevertheless, the fact that the large and small spheres
tightly pack in the highly dense mixture remains valid. For small
spheres, the density distribution function for both models shows
insignificant difference at all packing fractions, and small spheres
pack from the cavity wall towards the inner region.

In the quasi-2Dmodel, the z-direction fluctuation is responsible
for diminishing the density distribution of the large sphere at near
the cavity wall due to the higher local density of small spheres
around the cavity boundary. As a result, it promotes the large
sphere shifting towards the interior of the cavity, by which the
chance of the large sphere to overlap with small spheres can
be reduced (Note that the number of small spheres near center
is the lowest.) This result is consistent with our observation in
Fig. 2. Through the qualitative comparison of the experimentally
determined density distribution function (i) in Fig. 2(b), it shows
that at the lowpacking fraction in Fig. A.1(a), the large sphere in the
quasi-2Dmodel has a fair probability distributing around the cavity
wall, and shows the feature similar to that of the 2D model except
near the area in direct contact with wall. By increasing the packing
fraction to the case in Fig. A.1(b), both models show that the large
sphere distribute near the wall and the central region of the cavity
with similar probability as in (ii) of Fig. 2(b). At the highest packing
fraction as in Fig. A.1(c), the large sphere in the quasi-2D model
displays the behavior that resembles the experiment observation
with less pronounced oscillation in ρL(r) and a near steady
increase towards the center of the cavity in (iii) of Fig. 2(b). These
findings indicate that in the real experiment, the spatial fluctuation
due to vibration is different from the simulation model and is
roughly between the 2D and the quasi-2Dmodel.Moreover,Monte
Carlo simulation deals with equilibrium systems without energy
dissipation. Such a method may not provide the entire picture
of our non-equilibrium experiment. Nevertheless, the simulation
models render the opportunity to clarify the possible role of the
spatial fluctuation introduced by the vibration in experiment.
Appendix B. Supplementary material

Supplementary material related to this article can be found
online at http://dx.doi.org/10.1016/j.physd.2016.06.014.
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