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We observed single DNA molecules at different ethanol con-

centrations by using fluorescence microscopy. Large single
DNA molecules undergo reentrant conformational transitions

from elongated coil into folded globule and then into elongat-
ed coil state, accompanied by the increase of the concentra-

tion of ethanol in a low-salt aqueous environment. The second

transition from globule into the coil state occurs at around
70 % (v/v) ethanol. From circular dichroism (CD) measurements,

it is confirmed that the reentrant transition of the higher order
structure proceeds together with the transitions of the secon-

dary structure from B to C and, then, from C to A in a coopera-
tive manner. The determined mechanism of the reentrant tran-

sition is discussed in relation to the unique characteristics of

solutions with higher ethanol content, for which clathrate-like
nanostructures of alcohol molecules are generated in the sur-

rounding water.

Ethanol precipitation is often used to obtain DNA molecules

extruded from cells. An ethanol solution of around 70 % (v/v) is

commonly used to induce DNA precipitation.[1] A decrease in
ionic dissociation at lower dielectric constants in the presence

of ethanol is considered to be the mechanism that underlies
DNA precipitation. The dielectric constant of ethanol is approx-

imately one third that of water, which could lead to the ex-
pectation that a higher concentration of ethanol would be

more favorable for obtaining precipitates of DNA. However,

protocols do not recommend the use of an ethanol concentra-
tion above 70 % (v/v) for DNA precipitation.[1] Although it is

not clear why currently available experimental protocols avoid
higher concentrations there seems to be an expectation that

70 % (v/v) ethanol is suitable for avoiding contamination from

cell extracts.
It has been a long-standing puzzle why the entropy of an

ethanol solution is much lower than that expected theoretical-
ly, based on the randomly mixed state.[2] This phenomenon has

been attributed to the formation of icelike or clathrate-like

nanostructures with alcohol molecules in the surrounding
water.[3] Based on neutron-diffraction measurements in a meth-

anol–water mixture with a molar ratio of 7:3, it has been re-
ported that most of the water molecules exist as small hydro-

gen-bonded strings and clusters surrounded by close-packed
methyl groups.[4] Since that report, several experimental and

theoretical studies have suggested the formation of clusters of

alcohol molecules.[5] In spite of these recent studies stimulated
by the results of neutron diffraction, as far as we are aware,

there seems to be no studies on specific chemical and/or bio-
chemical properties associated with the formation of such

nanosized molecular clusters, including abnormality of the
solvability of biomacromolecules and/or polyelectrolytes.

In the present study, we performed single-molecule observa-

tions of large genomic DNA molecules in ethanol–water solu-
tions under low-salt conditions. We found that individual DNA

molecules exhibit a folding transition from an elongated coil
to a compact state upon an increase of the ethanol concentra-

tion to above 50 % (v/v). Interestingly, large genomic DNA mol-
ecules undergo an unfolding transition from a compact to an

elongated coil state upon a further increase in the alcohol con-

centration up to 80 % (v/v) in an ethanol–water solution under
low-salt conditions. We discuss the unexpected phenomenon

of decondensation of DNA in relation to the nanoscaled segre-
gation of the ethanol–water solution.

Figure 1 (left) shows examples of fluorescence microscopic
images of single l-DNA molecules at different ethanol concen-
trations, where the DNA molecules are undergoing translation-

al and intrachain Brownian motion.[6] The histograms in
Figure 1 (right) shows the long-axis length, L, where L is de-

fined schematically at the top of the histograms. At a low con-
centration of ethanol, that is, at 0–40 % (v/v), DNA molecules

assume an elongated coil conformation that exhibits signifi-
cant intrachain Brownian motion. At 50 % (v/v), around three

quarters of the DNA molecules display a coil conformation,

and the other quarter exhibits a folded compact conformation,
as shown in the histograms. At 60 % (v/v) ethanol, more than

half of the DNA molecules exhibit a folded compact state,
which is characterized as a bright optical dot with relatively

large translational Brownian motion. Upon a further increase in
the ethanol concentration up to 70 % (v/v), almost all of the
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DNA molecules assume an elongated coil conformation, thus

indicating a reentrant transition. At 80 % (v/v), L reverts to the
level seen at low ethanol concentrations. Thus, it becomes

clear that the essential features of the DNA conformations are
the same at low concentrations, 0–40 % (v/v), and at a high

concentration, 80 % (v/v).[7]

To study the change in the secondary structure of DNA de-
pending on the ethanol concentration, we measured the circu-

lar dichroism (CD) spectra of l-DNA. As shown in Figure 2, for
the spectra obtained at 0 and 40 % (v/v), the positive band at
around 278 nm and the negative band at around 248 nm indi-

cate that the secondary structure is in the B form. A significant
decrease in the positive Cotton effect around 280 nm was ob-

served at 60 and 70 % (v/v) ethanol, which implies a transition
from the B form to a C-like form in the secondary structure of

DNA. A further increase in the ethanol concentration causes

a change to an A-like conformation, as revealed by the signifi-
cant increase in the positive Cotton band at around 270 nm.[8]

The CD measurements indicate that the secondary structure
of DNA exhibits a successive change, B!C!A, accompanied

by a reentrant transition of the higher order structure, coil!
compact!coil conformation (Figure 3).[9] These experimental
observations suggest that a large DNA molecule undergoes an

unfolding transition from a compact to an elongated coil state
upon an increase in the ethanol concentration from 60 to
80 % (v/v).

Interestingly, a previous study involving a neutron-scattering

experiment suggested the formation of nanoclusters of water
molecules at high alcohol concentrations.[4] Thus, the unfolding

transition of compact DNA at higher ethanol concentrations is
attributable to the preferred association of such nanoclusters
of water with double-stranded DNA. Through this hydration

mechanism, the phosphate groups dissociate to a negatively
charged state, accompanied by the release of counter cations

to the neighboring water-rich environment. As a result, as
highly charged polyelectrolytes, solutions with a high ethanol

concentration become good solvents for DNA.

Finally, we addressed the effect of the reentrant transition at
a macroscopic level. Figure 4 shows visual images of an etha-

nol solution of 1.0 mm calf thymus DNA. In the absence of
NaCl, a precipitate is generated at 60 % (v/v) ethanol, whereas

DNA is fully solvable at 80 % (v/v) ethanol, as indicated by the
clear solution. With the addition of 200 mm NaCl, precipitates

Figure 1. Observation of single DNA molecules at different ethanol concen-
trations. Left : Fluorescence microscopy images of single l-DNA molecules
undergoing intra- and intermolecular fluctuation in solutions with different
ethanol concentrations. The time interval is 0.5 s. Right: Probability distribu-
tion of long-axis length, L (see the top scheme for a definition) of DNA in so-
lution (l-DNA, 30 mm in nucleotide units).

Figure 2. CD spectra of DNA (l-DNA, 30 mm in nucleotide units) at different
ethanol concentrations.

Figure 3. Comparison of the effect of the ethanol concentration between
secondary (A) and higher-order structures (B) of l-DNA, as evaluated by CD
spectra and fluorescence microscopy, respectively. In (A), ellipticity, [q] , at
270 nm is given for the same conditions as in Figure 2.

ChemPhysChem 2016, 17, 471 – 473 www.chemphyschem.org Ó 2016 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim472

Communications

http://www.chemphyschem.org


of DNA are seen for both the 60 and 80 % (v/v) solutions,

which corresponds to the well-known phenomenon of ’ethanol

precipitation’.
Nowadays, ethanol precipitation is routinely used in molecu-

lar biology, as a result of many previous efforts to improve the
efficiency of the isolation and purification of natural DNA mol-

ecules. However, less attention has been given to physico-
chemical approaches in the great efforts to establish the proto-

col of ethanol precipitation. The interesting property of highly

concentrated ethanol solutions that was reported in the pres-
ent study may lead to further findings with regards to the sta-

bility of a rich variety of macromolecules, including proteins
and synthetic polyelectrolytes. Future research in this area
could involve physicochemical studies concerning the state of
water molecules adjacent to DNA molecules and/or charged

chemical species, where the application of neutron diffraction
would provide information on the unique property of highly
concentrated ethanol solutions.

Experimental Section

l-DNA (48 kbp) was purchased from Nippon Gene (Toyama, Japan)
and calf thymus DNA was obtained from Wako (Osaka, Japan). The
fluorescent cyanine dye quinolinium (1,1’-[1,3-propanediyl-bis[(di-
methyliminio)-3,1-propanediyl]]bis[4-[(3-methyl-2(3 H)-benzoxazoly-
lidene)-methyl]]tetraiodide) was purchased from Molecular Probes
Inc. (Eugene, OR, USA). 2-Mercaptoethanol (2-ME) and other chemi-
cals were obtained from Wako Pure Chemical Industries (Osaka,
Japan). The cyanine dye YOYO-1 at a concentration of 0.2 mm was

added to the DNA solution, together with the antioxidant 2-ME
[4 % (v/v)] , to visualize individual DNA molecules by fluorescence
microscopy. Details of the experimental conditions for the observa-
tion of single DNA molecules was essentially the same as in our
previous study.[10] Observations were carried out at around 24 8C
with a DNA concentration of 30 mm in nucleotide units. Fluores-
cence images of DNA molecules were observed using a microscope
(Axiovert 135 TV, Carl Zeiss, Germany) equipped with an oil-im-
mersed 100 Õ objective lens, and recorded on DVDs by using
a highly sensitive electron-bombarded charge-coupled device
(EBCCD) (Hamamatsu Photonics, Hamamatsu, Japan). The recorded
video images were analyzed with the freely available image-proc-
essing software ImageJ (National Institute of Mental Health, MD,
USA). CD spectra of l-DNA (30 mm in nucleotide units) dissolved in
ethanol–water solutions were measured at 25 8C with a CD spec-
trometer (J-720w, JASCO, Japan). The cell path length was 1 cm.
Measurements were performed at a scan rate of 100 nm min¢1 and
CD spectra were obtained as the accumulation of three scans.
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Figure 4. Visual inspection on the solvable state of DNA. For comparison,
photographs are shown for 60 and 80 % (v/v) ethanol solutions of calf
thymus DNA (1.0 mm in nucleotide units) in the absence and presence of
200 mm NaCl.
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