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Abstract. The number of double-strand breaks can be evaluated from the change of average 

DNA length. The average DNA length is measured by the single-molecule observation 

method using fluorescence microscope. The measurement of DNA length in the microscope 

images is done manually by experienced operators and it is time consuming in many experi-

ments. An image processing method using OpenCV library to measure length of DNA in flu-

orescence microscope images is developed in this paper. An automation of measurement us-

ing deep learning is also proposed. 
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1. Introduction 

Damages of DNA induce serious problems for living things because DNA contains genetic 

instructions for the development, functioning, growth and reproduction of all known living 

organisms. Many research reports that DNA is damaged by chemical and physical reactions 

in environmental condition. For example, ultrasonic which is important for application in 

practical medicine causes double-strand breaks in genome-sized DNA [1]. Photo induced 
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damages in DNA are also investigated [2]. Quantitative evaluation of DNA damages induced 

by radiations such as  ray irradiation [3-6] are key issue for radiation protection. The effects 

of tritium, which is planning to be used for fusion power generation, on DNA are also at-

tracting the interest of researchers [7-10]. 

Single-molecule observation method is widely used for the investigation of dou-

ble-strand breaks in DNA. In the observation, images of DNA molecules can be captured by 

fluorescence microscopes by using fluorescent dye such as YOYO-1 as a photosensitizer. By 

measuring changes in DNA length, it is possible to investigate how much the factors such as 

ultrasound, visible light, and radiation, cause double-strand breaks. More quantitatively, the 

number of double-strand breaks 𝑁 can be calculated by the relation 𝑁 = (〈𝐿0〉 − 〈𝐿〉)/〈𝐿〉, 

where 〈𝐿0〉 and 〈𝐿〉 are the average DNA length before and after the factors that cause dou-

ble-strand breaks occur, respectively. 〈𝐿0〉 or 〈𝐿〉 can be obtained by measuring length and 

number of DNA segments in fluorescence microscope images.  

Usually, the measurement is done manually by experienced operators and it is time con-

suming. In this paper, therefore, an image processing method is developed to measure the 

length of DNA segments in fluorescence microscope images. The automation of DNA length 

measurement can be achieved by the following two steps: 1) extracting only DNA segments 

from fluorescence microscopy images, and 2) measuring the length of the DNA segments by 

OpenCV. Step 2) is explained in section 2. Step 1) can be realized by deep learning, which is 

explained in section 3 

2. Measurement method by image processing of OpenCV 

An example of the original image captured by a fluorescence microscope is shown in Fig. 1 

(a). Multiple DNA segments are shown in white in the image. To measure the length of a 

DNA segments, we convert the segments into a thin line one pixel wide (skeletonization). 

Using OpenCV library, the original images are skeletonized by the following steps before 

measuring the length and number of DNA segments in the image by the method explained 

later. In the steps, OpenCV functions: “equalizeHist”, “threshold”, “adaptiveThreshold”, 

 

Figure 1: Example of a result of image processing by conventional method by OpenCV. 
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“opening”, “findContours”, and “arcLength” are used. “equalizeHist” is used to equalize the 

histogram to adjust the contrast of the original fluorescence microscope images. “threshold” 

is used for binarization of the images with constant threshold. “adaptiveThreshold” is used 

for binarization using threshold values that varies according to the local shading of the image. 

“opening” is used for the noise reduction by applying erosion and dilation. “findContours” is 

used to detect the outline of the DNA segments. “arcLength” is used to measure the length of 

the outline detected by “findContours”. 

step-A1 The histogram of the image is equalized by the function “equalizeHist” in OpenCV. 

step-A2 The change in local shading is reduced by the unevenness coefficient as shown in 

Fig. 1 (b). 

step-A3 The histogram is manually adjusted by changing tone curve by the function “LUT” 

as shown in Fig. 1 (c). 

step-A4 The image is binarized by the function “threshold” or “adaptiveThreshold” as show 

in Fig. 1 (d). 

step-A5 Noise reduction is performed by the function “opening” in OpenCV as shown in Fig. 

1 (e). 

step-A6 The white pixels are skeletonized by Zhang-Suen method [11] as shown in Fig. 1 (f).  

The contrast and brightness of images depend on the experimental conditions. To sup-

port input images under various conditions, the procedure of image processing is manually 

controlled by the variables shown in Table 1 in addition to the tone curve in step-A3. 

After the skeletonization (step-A6), the length and number of DNA segments in the im-

age are measured. Figure 2 (a)-(c) show the process of measurement of the length of DNA 

segments. As shown in Fig 2 (b), the skeletonized image is firstly dilated by the function “di-

late” in OpenCV with kernel size of 2×2. Then, as shown in red color in Fig. 2 (c), the con-

tour of the area of white pixels is detected by the function “findContours” in OpenCV. Finally, 

Table 1: controlled parameters used in the proposed image processing method. 

Variables Type Range Explanation 

𝑠uneven bool True/False 
Bool value of whether to carry out step-A2. If the value is 

false, step-A2 is skipped. 

𝑘uneven integer 0-50 

Integer value of kernel size for calculating average 

brightness in calculation of the unevenness coefficient. 

Using 𝑘uneven, the value of (𝑖, 𝑗) pixel 𝑥𝑖𝑗 is updated to 

𝑥′𝑖𝑗  with the unevenness coefficient 𝑟𝑖𝑗  of (𝑖, 𝑗) pixel 

by the following equations: 

𝑥′
𝑖𝑗 = 255 × (1 − 𝑟𝑖𝑗), 𝑟𝑖𝑗 = (255 − 𝑥𝑖𝑗)/𝑅𝑖𝑗 ,  

𝑅𝑖𝑗 =
1

(2𝑘uneven + 1)2
∑ (255 − 𝑥𝑖+𝑘,𝑗+𝑙)

𝑘uneven

𝑘,𝑙=−𝑘uneven

. 

𝑠local bool True/False 
Bool value for adaptive thresholding in step-A4. The 

function “adaptiveThreshold” is applied instead of 

“threshold” if the value is true. 

𝑏threshold integer 0-255 
Integer value for the threshold of the binarization in 

step-A4. 

𝑘opening integer 0-20 Integer value of kernel size for the function “opening”. 
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length of contour is calculated by the function “arcLength” in OpenCV. The length of DNA 

segments is obtained by dividing the length of the contour by 2. Figure 2 (d) and (e) explain 

the method of counting the number of DNA segments. The number can be counted by divid-

ing the number of endpoints of the skeletonized segments by 2. The end points are empha-

sized in green in Fig. 2 (d). The pixel at an endpoint is detected by counting the number of 

white pixels in 8 adjacent pixels on the skeletonized DNA segments. Figure 2 (e) shows the 

enlarged image of the rectangle area shown by red frame in Fig. 2 (d). As shown in Fig. 2 (e), 

the number is unity for the pixels of endpoints as in the case of the pixel emphasized in green, 

although the number is two for the middle pixels of the segment emphasized in blue. We note 

that this measurement method provides the length of all intersecting segments as one segment. 

However, average length of DNA segments which is used for the calculation of number of 

double-strand breaks in DNA is obtained by dividing the total length of all DNA segments by 

the number of segments. 

Figure 3 shows the image after the measurement method is applied to the image shown 

in Fig. 1 (a). In the image, the counters of the DNA segments are shown in yellow. The de-

tected endpoints are shown by purple cross marks. Table 2 shows the comparison between 

DNA length measured by proposed image processing method and which obtained by manual 

measurement by an operator. In manual measurement, the operator clicks many times on the 

image to approximate the DNA segments with polygonal lines to obtain the DNA length. The 

segment numbers in Table 2 correspond to the numbers shown in Fig. 3. The result shows that 

the measurement by proposed method provides almost the same length as the result of manu-

al measurement although the value is slightly longer in most of the cases. We note that the 

length of #2 and #8 is not measured in manual measurement because the length is too short. 

The difference is relatively large in the case of #1 because the part of the DNA segment pro-

trudes from the image. 

 

 

 

 

Figure 2: Method of measurement of total length and number of DNAs. 
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Figure 3: Example of the applying the measurement method of total length and 

number of DNAs to an actual fluorescence microscope image. 

 

Table 2: Comparison between DNA length measured by proposed 

image processing method and which obtained by manual 

measurement. 

Segment 

No. 

Manual 

measurement [m] 

Measurement by 

image process. [m] Difference [m] 

#1 

#2 

#3 

#4 

#5 

#6 

#7 

#8 

#9 

#10 

19.87 

- 

3.32 

25.63 

8.76 

2.75 

5.72 

- 

5.54 

6.83 

23.70 

0.42 

2.96 

26.32 

9.40 

2.79 

5.96 

0.33 

5.68 

5.31 

3.82 

- 

-0.35 

0.69 

0.64 

0.04 

0.24 

- 

0.14 

-1.52 

3. Measurement automation by deep learning 

3.1. Overview of automation method 

When measure the length and number of DNA segments by the proposed image processing 

method explained in section 2, the operator must manually determine the tone curve in 

step-A3 and the control parameters shown in Table 1 to perform measurements on variety of 

images captured under different experimental conditions. In addition to that, operator must 

select DNA segments to measure because the images contain many images of impurities and 

curled DNA segments which should not include for the calculation of average DNA length as 

shown in Fig. 4.  
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Table 3: Explanation of five deep learning models used for the developed 

procedure shown in Fig. 5. 

Model Functions 

𝑴param 
Prediction of the control parameters and the tone curve 
used in step-A1 to step-A6. 

𝑴conn 
Connection of DNA segments that are separated in bina-
rization of step-A4 due to the problem of local shading. 

𝑴ext
p

, 𝑴ext
n  

Extraction of measurable DNA segments by removing 
impurities and curled DNA segments. 

𝑴noise Noise removal leaving the DNA segments. 

 

 

 
Figure 4: Example of fluorescence microscope images which contains 

many impurities and curled DNA segments. 

To achieve automatic measurement, deep learning models are developed for determining 

all controlled parameters and selecting measurable DNA segments. Figure 5 shows the pro-

cedure of automatic measurement using deep learning models. The procedure uses five deep 

learning models: 𝑴param, 𝑴conn, 𝑴ext
p

, 𝑴ext
n , and 𝑴noise. The functions of these mod-

els are explained in Table 3. In step-B1, step-A1 to step-A6 are performed with predicted pa-

rameters by 𝑴param. In step-B2, separate DNA segments, which should be considered as 

one DNA segment, are connected by 𝑴conn to improve the accuracy of DNA extraction in 

the next step. In step-B3a and step-B3b, the DNA extraction is performed by 𝑴ext
p

 and 

𝑴ext
n . To improve the accuracy, the two result images generated by two models 𝑴ext

p
 and 

𝑴ext
n  are superimposed in step-B4. To connect the DNA segments which are separated dur-

ing the image processing, 𝑴conn is applied again after skeletonization and dilation in 

step-B5 to step-B7. In step-B8, the skeletonization is performed again. Then, the noise reduc-

tion 𝑴noise is applied. The training processes of the five deep learning models are 

explained in section 3.2 and 3.5 to 3.7. 

3.2. Parameter prediction for image processing using OpenCV by CNN model: 𝑴𝐩𝐚𝐫𝐚𝐦  

Figure 6 shows the architecture of 𝑴param. Convolutional neural network (CNN) [12] 

is adopted for the model. 𝑴param received an equalized fluorescence microscope image (the  
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Figure 5: Procedure of automatic image processing of DNA extraction by five 

deep learning models: 𝑴param, 𝑴conn, 𝑴ext
p

, 𝑴ext
n , and 𝑴noise. 

 
 
image after step-A1) and output a 261-dimensional vector. Input images are resized to 

512×512 pixels. The 5 of 261 dimensions correspond to the 5 parameters shown in Table 1, 

and remaining 256 dimensions correspond to the tone-curve in step-A3. All values of the 

output vector corresponding to integer parameters are scaled to 0 to 1.0 by dividing maxi-

mum of the range of the parameter. The values corresponding to bool values are set to 1.0 for 

Ture and 0.0 for False. 

178 equalized fluorescence microscope images are prepared for the training and valida-

tion. 80 of 178 images are captured at University of Toyama using an inverted microscope 

(IX73, Olympus Co., Japan) equipped with a sCMOS camera (Zyla 4.3, Andor Technology 

Co., UK). 73 of 178 images are captured at Shizuoka university using an inverted microscope 

(IX73, Olympus Co., Japan) equipped with a sCMOS camera (Zyla 5.5, Andor Technology 

Co., UK). 25 of 178 images are captured at Doshisha University using an inverted micro-

scope (Axiovert 135 TV, Carl Zeiss, Germany) equipped with an oil-immersed 100V objec-

tive lens. The 73 images captured at Shizuoka university are prepared by data augmentation 

from original 4 images. For the training and validation, corresponding output vectors for the 

178 images are prepared manually by an operator. Figure 7 shows four examples of the input 

images used for the training. The left images are the equalized fluorescence microscope im-

ages, and the right images are the results of the image processing from step-A2 to step-A6 

with manually adjusted parameters. The manually adjusted parameters and tone curve for the 

four examples are shown in Fig. 8 and Table 4.  

80% of 178 images are used for the training and remaining 20% is used for the validation. 

Mean absolute error (MAE) is used for the loss function. Stochastic gradient descent (SGD) 

is used for the optimization. Figure 9 shows the evolution of training and validation loss dur-

ing the training. 
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Figure 6: Architecture of CNN adopted for 𝑴param. 

 

 

 

Figure 7: Four examples of pair of equalized input images (left), and the results (right) of the 

image processing from step-A2 to step-A6 with manually adjusted parameters for 

the training of CNN model 𝑴param. Sample-1 and 2 are images captured at Uni-

versity of Toyama. Sample-3 is an image captured at Doshisha University. Sam-

ple-4 is an image captured at Shizuoka university. 
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Figure 8: Manually adjusted tone-curves for the four examples shown in Fig. 7. 

 

 

Table 4: Manually adjusted parameters for the four examples shown in Fig. 7.  

 Variable 𝑠uneven 𝑘uneven 𝑠local 𝑏threshold 𝑘opening 

Type bool integer bool integer integer 

Range True/False 0-50 True/False 0-255 0-20 

sample-1 True 50 False 201 0 

sample-2 True 50 False 66 0 

sample-3 True 38 False 110 0 

sample-4 True 50 False 79 0 

 

 

Figure 9: Evolution of training and validation loss during the training of CNN model  𝑴param. 
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3.3. Introduction to pix2pix 

As explained in section 3.1, image conversion is performed by 𝑴conn, 𝑴ext
p

, 𝑴ext
n , and 

𝑴noise after the fluorescence microscope images are binarized by step-A1 to step-A5 with 

predicted parameter provided by 𝑴param. 𝑴conn interpolates the disconnected DNA seg-

ments. 𝑴ext
p

 and 𝑴ext
n  extract DNA segments. 𝑴noise reduces noise. Pix2pix [13], which 

is a deep learning model which generates a converted image from an input image, is adopted 

for the models of 𝑴conn, 𝑴ext
p

, 𝑴ext
n , and 𝑴noise.  

Pix2pix is one of generative adversarial networks (GAN). The model consists of a gen-

erator 𝑮 and a discriminator 𝑫. In the case of pix2pix, 𝑮 and 𝑫 are trained by many of 

image pairs of (𝒙, 𝒚c), where 𝒙 is an original input image and 𝒚c is a corresponding con-

verted image. 𝑮 outputs an image 𝒚 = 𝑮(𝒙) from an input image 𝒙. 𝑮 is trained to pre-

dicts 𝒚c from 𝒙. The size of 𝒙, 𝒚, 𝒚c is set to 512×512 pixels in our model. 𝑫 outputs 

2-dimensional normalized vector 𝒆 = 𝑫(𝒙D) from an input image 𝒙D. 𝑫(𝒙D) is trained to 

be a function f(𝒙D) defined as follows: 

𝒇(𝒙D) ≡ {
(1, 0)    when 𝒙D is generator’s output 𝒚

(0, 1)    when  𝒙D is training image 𝒚c      
, 

by minimizing the cross entropy ℒlog (𝑫(𝒙D), 𝒇(𝒙D)). In the training process of 𝑫, 𝒙D is 

set to a training image 𝒚c in half probability and set to 𝑮’s output 𝒚 = 𝑮(𝒙), otherwise. 𝑮 

is trained to maximizing the cross entropy ℒlog(𝒆G, 𝒇G)  and minimizing the L1 loss 

ℒL1(𝒚c, 𝒚) where 𝒆G ≡ 𝑫(𝑮(𝒙)) and 𝒇G ≡ 𝒇(𝑮(𝒙)) = (1,0). The definition of ℒlog and 

ℒL1 are as follows: 

ℒlog(𝒆, 𝒇) ≡ ∑ 𝑓𝑘log𝑒𝑘

𝑘

,     ℒL1(𝒚c, 𝒚) ≡ ∑|𝑦𝑖𝑗
c − 𝑦𝑖𝑗|

𝑖,𝑗

, 

where, 𝑒𝑘 and 𝑓𝑘 are 𝑘-th element of vector 𝒆 and 𝒇, respectively. 𝑦𝑖𝑗
c  and 𝑦𝑖𝑗 are the 𝑖, 

𝑗 element of matrix 𝒚c and 𝒚, respectively. Again, the training adversarially proceeds under 

minimizing ℒlog(𝒆, 𝒇) by 𝑫, and maximizing ℒlog(𝒆G, 𝒇G) by 𝑮. Instead of maximizing 

ℒlog(𝒆G, 𝒇G), ℒlog(𝒆G, 𝒇̅G) is minimized to simplify the calculation, where 𝒇̅G = (0,1). 

Therefore, 𝑮 is trained by minimizing the following loss function ℒG. 

ℒG(𝒆G(𝒙), 𝒚(𝒙), 𝒚c) ≡ ℒlog(𝒆G, 𝒇̅G) + ℎℒL1(𝒚c, 𝒚) 

Here, ℎ = 10 is a hyper parameter. For the optimization, Adam [14] is used with batch size 

of four. 

Figure 10 (a) and (b) show the architecture of 𝑮  and 𝑫 . 𝑮  consists of a 

down-sampling part and an up-sampling part. In the down-sampling part, input image is 

downscaled by repeated convolutional layer 𝐿𝑖
dn shown in Fig. 10 (a). In the up-sampling 

part, the downscaled data is upscaled by repeated convolutional layer 𝐿𝑖
up

 shown in Fig. 10 

(a). 𝑫 consists of repeated convolutional layer 𝐿𝑖
D shown in Fig. 10 (b) for down-sampling. 

The size of parameters 𝑊𝑖
dn × 𝐻𝑖

dn × 𝐶𝑖
dn ,  𝑊𝑖

up
× 𝐻𝑖

up
× 𝐶𝑖

up
, and 𝑊𝑖

D × 𝐻𝑖
D × 𝐶𝑖

D of 

𝑖-th layer are shown in Table 5. 
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Figure 10: Architecture of pix2pix of (a) generator 𝑮 and (b) discriminator 𝑫 adopted for 

model of  𝑴conn, 𝑴ext
p

, 𝑴ext
n , and 𝑴noise. The parameter 𝛼 for the activa-

tion function: LeakyReLU is the slope when input value 𝑥 < 0. 

(b) 

(a) 
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Table 5: Parameters of repeated convolutional layers 𝐿𝑖
dn, 𝐿𝑖

up
, and 𝐿𝑖

D shown in Fig. 10. 

𝑖 1 2 3 4 5 6 7 8 9 

𝑊𝑖
dn 

𝐻𝑖
dn 

𝐶𝑖
dn 

128 

128 

128 

64 

64 

256 

32 

32 

512 

16 

16 

512 

8 

8 

512 

4 

4 

512 

2 

2 

512 

  

𝑊𝑖
up

 

𝐻𝑖
up

 

𝐶𝑖
up

 

2 

2 

512 

4 

4 

512 

8 

8 

512 

16 

16 

512 

32 

32 

256 

64 

64 

128 

128 

128 

64 

  

𝑊𝑖
D 

𝐻𝑖
D 

𝐶𝑖
D 

256 

256 

64 

128 

128 

128 

64 

64 

256 

32 

32 

512 

16 

16 

512 

8 

8 

512 

4 

4 

512 

2 

2 

512 

1 

1 

512 

3.4. Method of imitation image generation for preparing training data 

A software is developed to automatically generate enough sets of training data (𝒙, 𝒚c). The 

software generates imitation images of fluorescence microscope images which binarized by 

step-A1 to step-A5. As shown in Fig. 11, in the software, the imitation images 𝒙 and 𝒚c are 

generated by three steps: drawing DNA segments; drawing impurities including curled DNA; 

drawing noise. One DNA segment is drawn in white by connecting a series of points by 

third-order spline method. In addition to number of the points, distance and angle between 

adjacent points are controlled by random number to be closer to real DNA images. The 

thickness of DNA segments is also determined randomly. Number of DNA segments in an 

image are set randomly from 4 to 10. Impurities are drawn by pasting an image of impurities 

cut out from the actual fluorescence microscope images like a stamp. 200 stamps are prepared 

for the impurities. 22 examples of 200 stamps are shown in Fig. 12. These stamps are pasted 

at random positions after rotating or flipping randomly. The number of stamps in an image is 

randomly set from 20 to 100. Noise is drawn by randomly distributing white 1-pixel dots. The 

number of dots in an image are randomly set from 50 to 100000.  

 

 

Figure 11: (a) Example of generated imitation image by developed generation software for 

training data 𝒙 and 𝒚c. The image (a) is generated by superimposing the images 

of (b) DNA segments, (c) impurities, and (c) noise. The noise in this figure is 

drawn in 2 pixels for display while actual images are drawn in 1 pixel. 
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Figure 12: 22 examples of impurity images including curled DNA for generation of imitation 

images. 

 

3.5. Training of 𝑴𝐜𝐨𝐧𝐧 for interpolation of DNA segments 

The model 𝑴conn is trained to connect DNA segments which are separated in binarization 

of step-A4 due to the problem of local shading. Therefore, images which are artificially cut 

DNA segments are generated for training images 𝒙 corresponding to 𝒚c. In the generation 

of training images 𝒙, in the first, the DNA segments are drawn while changing the thickness 

of each part of that segments corresponding 𝒚c as shown in Fig. 13 (a). Then, blur effects 

are applied the segments with a thickness of 2 pixels or more as shown in Fig. 13 (b). Finally, 

the image is binarized as shown in Fig. 13 (c). Figure 14 shows four examples of training da-

ta set (𝒙, 𝒚c) generated by the software. 

The model 𝑴conn is trained to predict 𝒚c from 𝒙. Figure 15 shows the history of 

training loss during the training. The values of three loss functions: cross entropy 

ℒlog(𝑫(𝒙D), 𝒇(𝒙D)) for training of discriminator 𝑫; cross entropy ℒlog(𝑫(𝑮(𝒙)), 𝒇G) for 

training of generator 𝑮; L1 loss ℎℒL1(𝒚c, 𝑮(𝒙)) are shown separately. ℒlog(𝑫(𝒙D), 𝒇(𝒙D)) 

and ℒlog(𝑫(𝑮(𝒙)), 𝒇G) reach equilibrium. As a result, ℒL1(𝒚c, 𝑮(𝒙)) becomes smaller. 

 

 

Figure 13: Generation process of imitation DNA segments which are artificially cut for gen-

eration of training input images 𝒙 of 𝑮 for training of 𝑴conn. 
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Figure 14: Four examples of input images 𝒙 of 𝑮 (left) and expected output images 𝒚c of 

𝑮 (right) for the training of 𝑴conn. 

 

Figure 15: Evolution of training loss during the training of 𝑴conn. 

3.6. Training of 𝑴ext
p

 and 𝑴ext
n  for extraction of DNA  

𝑴ext
p

 is trained to extract DNA segments from input images. Figure 16 shows four examples 

of the training data set (𝒙, 𝒚c) for 𝑴ext
p

 generated by the software. The input image 𝒙 is 

generated by almost the same procedure of generation of 𝒙 for the training of 𝑴conn ex-

cept for mixing cut DNA segments with uncut segments. By drawing pieces of cut DNA 

segments in 𝒙 with uncut segments, 𝑴ext
p

 is expected to learn the difference of the pieces 

of cut DNA segments from impurities which should be removed. The expected output images 

𝒚c is generated by drawing impurities and noise in gray. We note that the training fails if any 

impurities and noise are not drawn in 𝒚c, because 𝑮 outputs an image filled with black in 

the beginning in that case, and 𝑫 cannot distinguish the difference between 𝒚c and 𝒚 =

𝑮(𝒙) in the early stage of training when the performance of 𝑫 is poor. By drawing impuri-

ties and noise in gray, it is possible to suppress 𝑮 from outputting the black image.    
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Figure 16: Four examples of input images 𝒙 of 𝑮 (left) and expected output images 𝒚c of 

𝑮 (right) for the training of 𝑴ext
p

. 

 

In addition to 𝑴ext
p

, 𝑴ext
n  is also trained to extract DNA segments from input images. 

Figure 17 shows two examples of training data set (𝒙, 𝒚c) for 𝑴ext
n  generated by the soft-

ware. The images below are the enlarged images of the region surrounded by red square 

frames. The input image 𝒙 is generated by the same procedure of 𝑴ext
p

. The expected out-

put images 𝒚c is generated by drawing DNA segments in black after impurities and noise is 

drawn in white. As shown in Fig. 18, using 𝑴ext
n , images of DNA segments are obtained by 

subtracting the output images 𝒚 = 𝑮(𝒙) from the original input images 𝒙. 

At the step-B4, two DNA extracted images obtained by 𝑴ext
p

 and 𝑴ext
n  are superim-

posed. Both 𝑴ext
p

 and 𝑴ext
n  have the probability to eliminate parts of DNA segments by 

misjudging as impurities. By superimposing two images obtained by different models, the 

probability of misjudgment can be reduced. Figure 19 shows the evolution of training loss 

during the training of 𝑴ext
p

 and 𝑴ext
n . 

 

 

Figure 18: Method of DNA extraction by 𝑴ext
n . (a) Image of DNA segments. (b) Input im-

ages 𝒙 of 𝑮. (c) Output images 𝒚 = 𝑮(𝒙). Image (a) is obtained by subtracted 

the image (c) from the image (b). 
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Figure 17: Two examples of input images 𝒙 of 𝑮 (left) and expected output images 𝒚c of 

𝑮 (right) for the training of 𝑴ext
n . The images below are the enlarged images of 

the region surrounded by red square frames. 

 

Figure 19: Evolution of training loss during the training of (a) 𝑴ext
p

 and (b) 𝑴ext
n . 

3.7. Training of 𝑴𝐧𝐨𝐢𝐬𝐞 for noise reduction 

𝑴noise is trained to remove noise while remaining DNA segments. The opening method is 

known as a classical noise reduction method. However, in the method, skeletonized lines one 

pixel width are also considered as noise and be removed. In this study, deep learning model is 

trained to separate DNA lines of one pixel width from noise and remove only the noise. 

Figure 20 shows four examples of training data set (𝒙, 𝒚c) for 𝑴noise generated by the 

software. The input image 𝒙 is generated by the same procedure of 𝑴conn. Expected output 

images 𝒚c are generated as images as no noise. We note 𝑴noise can apply even for noise 

removal with skeletonized lines whose thickness is 1 pixel while opening method which is a 

conventional noise removal method cannot remain skeletonized lines. Figure 21 shows the 

evolution of training loss during the training of 𝑴noise. 

 

(a) (b) 
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Figure 20: Three examples of input images 𝒙 of 𝑮 (left) and expected output images 𝒚c of 

𝑮 (right) for the training of pix2pix model 𝑴noise. 

 

Figure 21: Evolution of training and validation loss during the training of 𝑴noise. 

3.8. Results 

Figure 22 shows an example of evolution of an actual fluorescence microscope image from 

step-B1 to step-B9. As explained in section 3.1, 𝑴param is applied to predict the parameters 

for image processing by OpenCV (step-A1 to step-A6) in step-B1. It is confirmed that DNA 

segments are clearly binarized by the image processing with predicted parameters although 

some DNA segments are separated due to the problem of local shading of the input image. 

𝑴conn is applied to connect separated DNAs segments in step-B2. After that, 𝑴ext
p

 and 

𝑴ext
n  are applied to remove impurities and curled DNA segments, and extract measurable 

DNA segments in step-B3a and step-B3b. It is seen that some DNA segments that are ex-

tracted in one model are not extracted in the other, or vice versa. At step-B4, both images ob-

tained by 𝑴ext
p

 and 𝑴ext
n  are superimposed. Skeletonization is performed in step-B5. In 
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this image, it is seen that some DNA segments are disconnected. To connect the disconnected 

segments, 𝑴conn is applied again in step-B7 after skeletonized segments are dilated at 

step-B6. The image of step-B7 shows that many of the cut DNA segments are connected. In 

step-B8, skeletonization is applied again. Finally, 𝑴noise is applied for noise reduction. It is 

seen that the skeletonized segments are remained even though noise is removed in step-B9. 

Figure 23 shows the six examples of results of automatic image processing. Left images 

show the original input images obtained by actual fluorescence microscope. Middle images 

are the image after step-B1 is applied. Right images show the final images after step-B9 is 

applied. Even for various input images with different contrast and brightness, DNA segments 

are almost correctly extracted after the parameters are automatically estimated, although 

some DNA segments that should be separated are connected, or some of faint parts of DNA 

segments are eliminated. By applying the measurement method explained in section 2, total 

length of DNA segments can be measured. In the near future, we are planning to reveal the 

accuracy of the automatic measurements by comparing them with data already measured 

manually. We confirmed that DNA segments can be extracted by the procedure in most cases. 

However, in some special cases, we found some additional treatment is necessary to apply 

manually for the DNA extraction. Fig. 23 (f) is one of the special cases. In this case, sig-

nal-to-noise ratio of input image is too low to extract DNA segments. Therefore, to reduce the 

noise, 𝑴noise is manually applied after step-B1 is applied as shown in Fig. 23 (f2). By ap-

plying the procedure from step-B2 to step-B9 to the image of Fig. 23 (f2), DNA segments is 

successfully extracted. 

4. Summary 

To measure DNA length and number of DNA segments in fluorescence microscope images, 

image processing method using OpenCV is developed. The method has control parameters to 

measure for various input images which is captured under different experimental conditions. 

To realize measurement automation, a deep leaning model 𝑴param using CNN is developed. 

The model predicts the control parameters. Moreover, to extract DNA segments and remove 

images of impurities and noise from the input images, four deep learning models 𝑴conn, 

𝑴ext
p

, 𝑴ext
n , and 𝑴noise using pix2pix are developed. Applying these models, we succeeded 

in automatically measuring the length of the DNA segments for most input images. It is also 

confirmed that some input images with a low signal-to-noise ratio can be measured by manu-

ally removing noise by applying 𝑴noise in the appropriate steps. 
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Figure 22: Example of evolution of an actual fluorescence microscope image from step-B1 to 

step-B9. 
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Figure 23: Six examples of results of automatic image processing. Left images are the origi-

nal input images obtained by actual fluorescence microscopes. Middle images are 

the image after step-B1. Right images are the final images after the processing 

(step-B9). 
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